Skip to main content

Modeling Mechanical-Electrical Transduction in the Heart

  • Chapter
Cell Mechanics and Cellular Engineering

Abstract

The rate and rhythm of the heart is sensitive to mechanical deformation. As early as 1915, Bainbridge reported that distention of the atria produced an increase in heart rate (Bainbridge, 1915). Later studies showed that stretching alters action potential configuration (Dudel and Trautwein, 1954; Rosen et al. 1981; Dean and Lab, 1989; Lab, 1980; Taggart et al. 1992c; Taggart et al. 1992a; Taggart et al. 1992b; White et al. 1993), cause quiescent tissue to become spontaneously active and cause the generation of extra systoles (Hansen et al. 1990; Rajala et al. 1990; Stacy, Jr. et al. 1992; Sideris et al. 1990; Sideris et al. 1989; Hansen et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous Heart Program Manual, V3.8. Oxford, England: Oxsoft Ltd., 1992.

    Google Scholar 

  • Bainbridge, F. A. The influence of venous filling upon the rate of the heart. J. Physiol. 50:65–84, 1915.

    PubMed  CAS  Google Scholar 

  • Cooper, K. E., Tang, J. M., Rae, J. L., and Eisenberg, R. S. A cation channel in frog lens epithelia responsive to pressure and calcium.. J. Membrane Biol. 93:259–269, 1986.

    Article  CAS  Google Scholar 

  • Craelius, W., Chen, V., and El-Sherif, N. Stretch activated ion channels in ventricular myocytes. Bioscience Reports 8:407–414, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Dean, J. W. and Lab, M. J. Arrhythmia in heart failure: Role of mechanically induced changes in electrophysiology. The Lancet 1:1309–1312, 1989.

    Article  CAS  Google Scholar 

  • DiFrancesco, D. and Noble, D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil Trans. Roy. Soc. B307:353–398, 1985.

    Google Scholar 

  • Dudel, J. and Trautwein, W. Das Aktionspotential und Mechanogramm des Herzmuskels unter dem Einfluss der Dehnung.. Cardiologia 25:334–362, 1954.

    Article  Google Scholar 

  • Fatt, P. and Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol 117:109–128, 1952.

    PubMed  CAS  Google Scholar 

  • Francis, G. S. Development of arrhythmias in the patient with congestive heart failure: pathophysiology, prevalence and prognosis. Am. J. Cardiology 57:3B–7B, 1986.

    Article  CAS  Google Scholar 

  • Franz, M. R., Burkhoff, D., Yue, D. T., and Sagawa, K. Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc. es. 23:213–223, 1989.

    Article  CAS  Google Scholar 

  • Franz, M. R., Cima, R., Wang, D., Profitt, D., and Kurz, R. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86:968–978, 1992.

    PubMed  CAS  Google Scholar 

  • Guharay, F. and Sachs, F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (Lond) 352:685–701, 1984.

    CAS  Google Scholar 

  • Guharay, F. and Sachs, F. Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J. Physiol (Lond) 353:119–134, 1985.

    Google Scholar 

  • Hamill, O. P., Lane, J. W., and McBride, D. W. Amiloride: a molecular probe for mechanosensitive ion channels. Trends Pharmacol Sci 13:373–376, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P. and McBride, D. W. Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc Natl Acad Sci USA 89:7462–7466, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, D. E., Craig, C. S., and Hondeghem, L. M. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation 81:1094–1105, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, D. E., Borganelli, M., Stacy, G. P. Jr., and Taylor, L. K. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ.Res. 69:820–831, 1991.

    PubMed  CAS  Google Scholar 

  • Hansen, D. E. Mechanoelectrical feedback effects of altering preload, afterload and ventricular shortening. Am. J. Physiol. 264:H423–H432, 1993.

    PubMed  CAS  Google Scholar 

  • Kaufmann, R. L., Lab, M. J., Hennekes, R., and Krause, H. Feedback interaction of mechanical and electrical events in the isolated mammalian ventricular myocardium (cat papillary muscle). Pflugers Arch. 324:100–123, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. A mechanosensitive K+ channel in heart cells — activation by arachidonic acid. J. Gen. Physiol. 100(6): 1021–1040, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. Circ Res. 72:225–231, 1993.

    PubMed  CAS  Google Scholar 

  • Lab, M. and Dean, J. Myocardial mechanics and arrhythmias. J. Cardiovasc. Pharm. 18(S2):S72–S79, 1991.

    Google Scholar 

  • Lab, M. J. Transient depolarization and action potential alterations following mechanical changes in isolated myocardium. Cardiovas. Res. 14:624–637, 1980.

    Article  CAS  Google Scholar 

  • Lab, M. J. Contraction-excitation feedback in myocardium. Circ.Res. 50:757–765, 1982.

    PubMed  CAS  Google Scholar 

  • Lane, J. W., McBride, D., and Hamill, O. P. Amiloride blocks the mechanosensitive cation channel in Xenopus oocytes. J Physiol (Lond) 441:347–366, 1991.

    CAS  Google Scholar 

  • Langton, P. D. Calcium channels currents recorded from isolated myocytes of rat basilar artery are stretch sensitive. J Physiol (Lond) 471:1–11, 1993.

    CAS  Google Scholar 

  • Lecar, H. and Morris, C. Biophysics of mechanotransduction. In: Mechanoreception by the Vascular Wall, edited by G. M. Rubanyi. Mount Kisco, NY: Futura Publishing, 1993, p. 1–11.

    Google Scholar 

  • Lerman, B. B., Burkhoff, D., Yue, D. T., and Sagawa, K. Mechanoelectrical Feedback: Independent Role of Preload and Contractility in Modulation of Canine Ventricular Excitability. J. Clin. Invest. 76:1843–1850, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Martinac, B. Mechanosensitive ion channels: biophysics and physiology. In: Thermodynamics of cell surface receptors, Ed. M.B. Jackson. CRC Press, 327–352, 1993.

    Google Scholar 

  • McAllister, R. E., Noble, D., and Tsien, R. W. Reconstruction of the electrical activity of cardiac purkinje fibres. J. Physiol. (Lond.) 231:1–59, 1975.

    Google Scholar 

  • Meinertz, T., Hoffman, T., Kasper, W., and et al, Significance of ventricular arrhythmias in idiopathic dilated cardiomyopathy. Am. J. Cardiology 53:902–907, 1984.

    Article  CAS  Google Scholar 

  • Morris, C. E. Mechanosensitive ion channels. J. Membrane Biol. 113:93–107, 1990.

    Article  CAS  Google Scholar 

  • Penefsky, Z. A. and Hoffman, B. F. Effects of stretch on mechanical and electrical properties of cardiac muscle. Am. J. Physiology 204:433–438, 1963.

    Google Scholar 

  • Rajala, G. M., Pinter, M. J., and Kaplan, S. Response of the quiescent heart tube to mechanical stretch in the intact chick embryo. Developmental Biology 61:330–337, 1990.

    Article  Google Scholar 

  • Rosen, M. R., Legato, M. J., and Weiss, R. M. Developmental changes in impulse conduction in the canine heart. Am. J. Physiol. 240:H546–H554, 1981.

    PubMed  CAS  Google Scholar 

  • Ruknudin, A., Sachs, F., and Bustamante, J.O. Stretch-activated ion channels in tissue-cultured chick heart. Am. J. Physiol 264:H960–H972, 1993.

    PubMed  CAS  Google Scholar 

  • Sachs, F. Stretch-sensitive Ion Channels. The Neurosciences 2:49–57, 1990.

    Google Scholar 

  • Sachs, F. Mechanical transduction by membrane ion channels: a mini review. Mol. Cell. Biochem. 104:57–60, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, F. Stretch sensitive ion channels: an update. In: Sensory Transduction, edited by D. P. Corey and S. D. Roper. NY: Rockefeller Univ. Press, Soc. Gen. Physiol., 1992, p. 241–260.

    Google Scholar 

  • Shultz, R. A., Strauss, H. W., and Pitt, B. Sudden death following myocardial infarction: relation to ventricular premature contractions in the late hosptal phase and left ventricular ejection fraction. Am. J. Med. Sci. 62:1921977.

    Google Scholar 

  • Sideris, D. A., Toumanidis, S. T., Kostis, E. B., Diakos, A., and Moulopoulos, S. D. Arrhythmogenic effect of high blood pressure: some observations on its mechanism. Cardiovasc. Res. 23:983–992, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Sideris, D. A., Toumanidis, S. T., Kostis, E. B., Stagiannis, K., Spyropoulos, G., and Moulopoulos, S. D. Response of tertiary centres to pressure changes. Is there a mechano-electrical association?. Cardiovasc. Res. 24:13–18, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Sigurdson, W. J., Morris, C. E., Brezden, B. L., and Gardner, D. R. Stretch activation of a K+ channel in molluscan heart cells. J. Exp. Biol. 127:191–209, 1987.

    Google Scholar 

  • Sigurdson, W. J., Ruknudin, A., and Sachs, F. Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am. J. Physiol. 262:H1110–H1115, 1992.

    PubMed  CAS  Google Scholar 

  • Sigurdson, W. J., Sachs, F., and Diamond, S. L. Mechanical perturbation of cultured human endothelial cells causes rapid increases of intracellular calcium. Am. J. Physiol. 264:H1745-H1752, 1993.

    PubMed  CAS  Google Scholar 

  • Sipido, K. R. and Marban, E. L-type calcium channels, potassium channels, and novel nonspecific cation channels in a clonal muscle cell line derived from embryonic rat ventricle. Circ.Res. 69:1487–1499, 1991.

    PubMed  CAS  Google Scholar 

  • Sokabe, M. and Sachs, F. Towards a molecular mechanism of activation in mecha-nosensitive ion channels. In: Advances in Comparative and Environmental Physiology, v10, edited by F. Ito. Berlin: Springer-Verlag, 1992, p. 55–77.

    Google Scholar 

  • Stacy, G. P., Jr., Jobe, R. L., Taylor, L. K., and Hansen, D. E. Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. Am. J. Physiol. 263:H613–H621, 1992.

    PubMed  Google Scholar 

  • Taggart, P., Sutton, P., John, R., Lab, M., and Swanton, H. Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre. Br. Heart J. 67:221–229, 1992a.

    Article  PubMed  CAS  Google Scholar 

  • Taggart, P., Sutton, P., and Lab, M. Interaction between ventricular loading and repolarization: relevance to arrhythmogenesis. Br. Heart J. 67:213–215, 1992b.

    Article  PubMed  CAS  Google Scholar 

  • Taggart, P., Sutton, P., Lab, M., Runnalls, M., O’Brien, W., and Treasure, T. Effect of abrupt changes in ventricular loading on repolarization induced by transient aortic occlusion in humans. Am. J. Physiol. 263:H816–H823, 1992c.

    PubMed  CAS  Google Scholar 

  • Van Wagoner, D. R. Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ.Res. 72:973–983, 1993.

    PubMed  Google Scholar 

  • White, E., Le Guennec, J. Y., Nigretto, J. M., Gannier, F., Argibay, J. A., and Gamier, D. The effects of increasing cell length on auxotonic contractions: membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp. Physiol. 78:65–78, 1993.

    PubMed  CAS  Google Scholar 

  • Yang, X. and Sachs, F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium Ions. Science 243:1068–1071, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. C. and Sachs, F. Characterization of stretch-activated ion channels in Xenopus oocytes. J. Physiol. (Lond.) 431:103–122, 1990.

    CAS  Google Scholar 

  • Yang, X. C. and Sachs, F. Mechanically sensitive, non-selective, cation channels. In: Non-selective ion channels, edited by D. Siemen and J. Hescheler. Heidelberg: Springer-Verlag 79–92, 1994.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Sachs, F. (1994). Modeling Mechanical-Electrical Transduction in the Heart. In: Mow, V.C., Tran-Son-Tay, R., Guilak, F., Hochmuth, R.M. (eds) Cell Mechanics and Cellular Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8425-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8425-0_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8427-4

  • Online ISBN: 978-1-4613-8425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics