Skip to main content

Cytokines and Pregnancy Recognition

  • Conference paper
Immunobiology of Reproduction

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

Abstract

Maternal recognition of pregnancy results from signaling between the trophoblast of the conceptus (embryo and associated membranes) and the maternal system (1). These signals ensure maintenance of the structural and functional integrity of the corpus luteum (CL) that would otherwise regress at the end of the estrous or menstrual cycle. The CL produces progesterone, the hormone of pregnancy that is required to stimulate and maintain endometrial functions that are permissive to early embryonic development, implantation, placentation, and successful fetoplacental development. The terms luteotrophic, luteal protective, antiluteolytic, and luteolytic will be defined before mechanisms for maternal recognition of pregnancy are discussed. A luteotrophic signal, chorionic gonadotropin (CG), is produced by primate conceptuses and is believed to act directly on the CL, via receptors for luteinizing hormone (LH), to ensure maintenance of its structural and functional integrity (2). The ovarian cycle of primates is uterine independent;that is, luteolytic events responsible for regression of the CL and cessation of progesterone secretion at the end of a menstrual cycle result from the intraovarian effects of prostaglandins (3), oxytocin (4), or other, as yet undefined, luteolytic agents. A luteolytic agent causes the structural and functional demise of the CL, or luteolysis. Prostaglandin F (PGF) is the luteolytic signal common to most, if not all, mammals. There may also be luteal protective signals—for example, PGE2 (PGE)—that antagonize the potential luteolytic effects of PGF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Short RV. Implantation and the maternal recognition of pregnancy. In:Heap RB, ed. Foetal autonomy, Ciba Foundation Symposium. London: Churchill, 1969:377–86.

    Google Scholar 

  2. Hearn JP, Webley GE, Gidley-Baird AA. Chorionic gonadotrophin and embryo-maternal recognition during the peri-implantation period in primates. J Reprod Fertil 1992;92:497–509.

    Google Scholar 

  3. Zelinski-Wooten MB, Stouffer RL. Intraluteal infusions of prostaglandins of the E, D, I, and A series prevent PGF2α-induced, but not spontaneous luteal regression in rhesus monkeys. Biol Reprod 1990;43:507–16.

    Article  PubMed  CAS  Google Scholar 

  4. Khan-Dawood FS, Marut EL, Dawood MY. Oxytocin in the corpus luteum of the cynomolgus monkey (Macaca fascicularis). Endocrinology 1984;115:570–4.

    Article  PubMed  CAS  Google Scholar 

  5. Lessey BA, Killam AP, Metzger DA, Haney AF, Greene GL, McCarty KS. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol 1988;67:334–40.

    Article  CAS  Google Scholar 

  6. Clarke CL. Cell-specific regulation of progesterone receptor in the female reproductive system. Mol Cell Endocrinol 1990;70:C29–33.

    Article  PubMed  CAS  Google Scholar 

  7. Okulicz WC, Savasta AM, Hoberg LM, Longcope C. Biochemical and immunohistochemical analyses of estrogen and progesterone receptors in the rhesus monkey uterus during the proliferative and secretory phases of artificial menstrual cycles. Fertil Steril 1990;53:913–20.

    PubMed  CAS  Google Scholar 

  8. Hild-Petito S, Verhage HG, Fazleabas AT. Estrogen and progestin receptor localization during implantation and early pregnancy in the baboon (Papio anubis) uterus. Biol Reprod 1991;44 (suppl 1):185.

    Article  Google Scholar 

  9. Bazer FW. Mediators of maternal recognition of pregnancy in mammals. Proc Soc Exp Biol Med 1992;199:373–84.

    PubMed  CAS  Google Scholar 

  10. Eggleston DL, Wilken C, Van Kirk EA, Slaughter RG, Ji TH, Murdoch WJ. Progesterone induces expression of endometrial messenger RNA encoding for cyclooxygenase (sheep). Prostaglandins 1990;39:675–83.

    Article  PubMed  CAS  Google Scholar 

  11. Flint APF, Sheldrick EL. Ovarian oxytocin and maternal recognition of pregnancy. J Reprod Fertil 1986;76:831–9.

    Article  PubMed  CAS  Google Scholar 

  12. Meyer HHD, Mittermeier T, Schams D. Dynamics of oxytocin, estrogen and progestin receptors in the bovine endometrium during the estrous cycle. Acta Endocrinol (Copenh) 1986;118:96–104.

    Google Scholar 

  13. Soloff MS, Fields MJ. Changes in oxytocin receptor concentrations throughout the estrous cycle of the cow. Biol Reprod 1989;40:283–7.

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs AR, Behrens O, Helmer H, Liu CH, Barros CM, Fields MJ. Oxytocin and vasopressin receptors in bovine endometrium and myometrium during the estrous cycle and early pregnancy. Endocrinology 1990;127:629–36.

    Article  PubMed  CAS  Google Scholar 

  15. Jenner LJ, Parkinson TJ, Lamming GE. Uterine oxytocin receptors in cyclic and pregnant cows. J Reprod Fertil 1991;91:49–58.

    Article  PubMed  CAS  Google Scholar 

  16. Wallace JM, Helliwell R, Morgan PJ. Autoradiographical localization of oxytocin binding sites on ovine oviduct and uterus throughout the oestrous cycle. Reprod Fertil Dev 1991;3:127–35.

    Article  PubMed  CAS  Google Scholar 

  17. McCracken JA, Schramm W, Okulicz WC. Hormone receptor control of pulsatile secretion of PGF2α from ovine uterus during luteolysis and its abrogation in early pregnancy. Anim Reprod Sci 1984;7:31–56.

    Article  CAS  Google Scholar 

  18. Ott TL, Zhou Y, Mirando MA, et al. Changes in progesterone and oestrogen receptor messenger ribonucleic acid and protein during maternal recognition of pregnancy and luteolysis in ewes. J Mol Endocrinol 1993;10:171–83.

    Article  PubMed  CAS  Google Scholar 

  19. Mirando MA, Harney JP, Zhou Y, Ogle TF, Ott TL, Bazer FW. Changes in progesterone and oestrogen receptor messenger ribonucleic acid and protein and oxytocin receptors in endometrium of ewes after intrauterine injection of ovine trophoblast interferon. J Mol Endocrinol 1993;10:185–92.

    Article  PubMed  CAS  Google Scholar 

  20. Stewart HJ, Stevenson KR, Flint APF. Isolation and structure of a partial sheep oxytocin receptor cDNA and its use as a probe for northern analysis of endometrial RNA. J Mol Endocrinol 1993.

    Google Scholar 

  21. Cherny RA, Salamonsen LA, Findlay JK. Immunocytochemical localization of oestrogen receptors in the endometrium of the ewe. Reprod Fertil Dev 1991;3:321–31.

    Article  PubMed  CAS  Google Scholar 

  22. Hooper SB, Watkins WB, Thorburn GD. Oxytocin, oxytocin associated neurophysin, and prostaglandin Fla concentrations in the utero-ovarian vein of pregnant and nonpregnant sheep. Endocrinology 1986;119:2590–7.

    Article  PubMed  CAS  Google Scholar 

  23. Poyser N. A possible explanation for the refractoriness of uterine prostaglandin production. J Reprod Fertil 1991;91:374–84.

    Google Scholar 

  24. Jenkin G. The interaction between oxytocin and prostaglandin F2a during luteal regression and early pregnancy in sheep. Reprod Fertil Dev 1992;4:321–8.

    Article  PubMed  CAS  Google Scholar 

  25. Homeida AM, Khalafalla AE. Effects of oxytocin-antagonist injections on luteal regression in the goat. Br J Pharmacol 1987;90:281–4.

    PubMed  CAS  Google Scholar 

  26. Schams D, Prokopp S, Barth D. The effect of active and passive immunization against oxytocin on ovarian cyclicity in ewes. Acta Endocrinol (Copenh) 1983;103:337–44.

    CAS  Google Scholar 

  27. Wathes DC, Ayad VJ, McGoff SA, Morgan KL. Effect of active immunization against oxytocin on gonadotrophin secretion and the establishment of pregnancy in the ewe. J Reprod Fertil 1989;86:653–64.

    Article  PubMed  CAS  Google Scholar 

  28. Flint APF, Sheldrick EL. Continuous infusion of oxytocin prevents induction of oxytocin receptors and blocks luteal regression in cyclic ewes. J Reprod Fertil 1985;75:623–31.

    Article  PubMed  CAS  Google Scholar 

  29. Schramm WL, Bovaird ME, Glew ME, Schramm G, McCracken JA. Corpus luteum regression induced by ultra-low pulses of prostaglandin F2a. Prostaglandins 1983;26:347–64.

    Article  PubMed  CAS  Google Scholar 

  30. Ellinwood WE, Nett TM, Niswender GD. Maintenance of the corpus luteum of early pregnancy in the ewe, I. Luteotropic properties of embryonic homogenates. Biol Reprod 1979;21:281–8.

    Article  PubMed  CAS  Google Scholar 

  31. Roberts RM, Cross JC, Leaman DW. Interferons as hormones of pregnancy. Endocr Rev 1992;13:432–52.

    PubMed  CAS  Google Scholar 

  32. Godkin JD, Bazer FW, Moffatt J, Sessions F, Roberts RM. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at day 13–21. J Reprod Fertil 1982;65:141–50.

    Article  PubMed  CAS  Google Scholar 

  33. Cross JC, Roberts RM. Constitutive and trophoblast-specific expression of a class of bovine interferon genes. Proc Natl Acad Sci USA 1991;88:3817–21.

    Article  PubMed  CAS  Google Scholar 

  34. Imakawa K, Anthony RV, Kazemi M, Marotti KR, Polites HG, Roberts RM. Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature 1987;330:377–9.

    Article  PubMed  CAS  Google Scholar 

  35. Stewart HJ, McCann SHE, Northrop AJ, Lamming GE, Flint APF. Sheep antiluteolytic interferon:cDNA sequence and analysis of mRNA levels. J Mol Endocrinol 1989;2:65–71.

    Article  PubMed  CAS  Google Scholar 

  36. Charpigny G, Reinaud P, Heut J-C, et al. High homology between a trophoblast protein (trophoblastin) isolated from ovine embryo and a-interferons. FEBS Lett 1988;228:12–6.

    Article  PubMed  CAS  Google Scholar 

  37. Charlier M, Hue D, Martal J, Gaye P. Cloning and expression of cDNA encoding ovine trophoblastin:its identity with a class-II alpha interferon. Gene 1989;77:341–8.

    Article  PubMed  CAS  Google Scholar 

  38. Pontzer CH, Torres BA, Vallet JL, Bazer FW, Johnson HM. Antiviral activity of the pregnancy recognition hormone ovine trophoblast protein-1. Biochem Biophys Res Commun 1988;152:801–7.

    Article  PubMed  CAS  Google Scholar 

  39. Roberts RM, Imakawa K, Niwano Y, et al. Interferon production by the preimplantation sheep embryo. J Interferon Res 1989;9:175–87.

    Article  PubMed  CAS  Google Scholar 

  40. Pontzer CH, Bazer FW, Johnson HM. Antiproliferative activity of a pregnancy recognition hormone, ovine trophoblast protein-1. Cancer Res 1991;51:5304–7.

    PubMed  CAS  Google Scholar 

  41. Leaman DW, Roberts RM. Genes for the trophoblast interferons in sheep, goat, and musk ox and distribution of related genes among mammals. J Interferon Res 1992;12:1–11.

    Article  PubMed  CAS  Google Scholar 

  42. Charlier M, Hue D, Boisnard M, Martal J, Gaye P. Cloning and structural analysis of two distinct families of ovine interferon-a genes encoding functional class II and trophoblast (oTP) a-interferons. Mol Cell Endocrinol 1991;76:161–71.

    Article  PubMed  CAS  Google Scholar 

  43. Martal J, Degryse E, Charpigny G, et al. Evidence for extended maintenance of the corpus luteum by uterine infusion of a recombinant a-interferon (trophoblastin) in sheep. J Endocrinol 1990;127:R5.

    Article  PubMed  CAS  Google Scholar 

  44. Ott TL, Van Heeke G, Hostetler CE, et al. Intrauterine injection of recombinant ovine interferon-tau extends the interestrous interval in sheep. Theriogenology 1993.

    Google Scholar 

  45. Ott TL, Van Heeke G, Johnson HM, Bazer FW. Cloning and expression in Saccharomyces cerevisiae of a synthetic gene for type I trophoblast interferon ovine trophoblast protein-1:purification and antiviral activity. J Interferon Res 1991;11:357–64.

    Article  PubMed  Google Scholar 

  46. Nephew KP, Whaley AE, Christenson RK, Imakawa K. Differential expression of distinct mRNAs for ovine trophoblast protein-1 and related sheep type I interferons. Biol Reprod 1993;48:768–78.

    Article  PubMed  CAS  Google Scholar 

  47. Helmer SD, Hansen PJ, Anthony RV, Thatcher WW, Bazer FW, Roberts RM. Identification of bovine trophoblast protein-1, a secretory protein immunologically related to ovine trophoblast protein-1. J Reprod Fertil 1987;79:83–91.

    Article  PubMed  CAS  Google Scholar 

  48. Baumbach GA, Duby RT, Godkin JD. N-glycosylated and unglycosylated forms of caprine trophoblast protein-1 are secreted by preimplantation goat conceptuses. Biochem Biophys Res Commun 1990;172:16–21.

    Article  PubMed  CAS  Google Scholar 

  49. Heyman Y, Camous S, Fevre J, Meziou W, Martal J. Maintenance of the corpus luteum after uterine transfer of trophoblastic vesicles to cyclic cows and ewes. J Reprod Fertil 1984;70:533–40.

    Article  PubMed  CAS  Google Scholar 

  50. Meyer MD, Drost M, Ott TL, et al. Recombinant ovine trophoblast protein-1 extends corpus luteum lifespan and reduced uterine secretion of prostaglandin F2α in cattle. J Anim Sci 1992;70 (suppl 1):270.

    Google Scholar 

  51. Ott TL, Newton GR. Intrauterine injection of recombinant ovine interferon τ (roIFNτ) blocks luteolysis and extends CL lifespan in goats. Biol Reprod 1993;48 (suppl 1):173.

    Google Scholar 

  52. Leaman DW, Cross JC, Roberts RM. Genes for the trophoblast interferons and their distribution among mammals. Reprod Fertil Dev 1992;4:349-

    Google Scholar 

  53. Hansen TR, Leaman DW, Cross JC, Mathailagan N, Bixby JA, Roberts RM. The genes for the trophoblast interferons and the related interferon-all pos-sess distinct 5’-promoter and 3’-flanking sequences. J Biol Chem 1991;266:3060–7.

    PubMed  CAS  Google Scholar 

  54. Imakawa K, Hansen TR, Malathy P-V, et al. Molecular cloning and characterization of complementary deoxyribonucleic acids corresponding to bovine trophoblast protein-1:a comparison with ovine trophoblast protein-1 and bovine interferon-aII. Mol Endocrinol 1989;3:127–39.

    Article  PubMed  CAS  Google Scholar 

  55. Stewart HJ, McCann SHE, Barker PJ, Lee KE, Lamming GE, Flint APF. Interferon sequence homology and receptor binding activity of ovine trophoblast antiluteolytic protein. J Endocrinol 1987;115:R13–5.

    Article  PubMed  CAS  Google Scholar 

  56. Knickerbocker JJ, Niswender GD. Characterization of endometrial receptors for ovine trophoblast protein-1 during the estrous cycle and early pregnancy in sheep. Biol Reprod 1989;40:361–70.

    Article  PubMed  CAS  Google Scholar 

  57. Hansen TR, Kazemi M, Keisler DH, Futhan-Veedu M, Imakawa K, Roberts RM. Complex binding of the embryonic interferon, ovine trophoblast protein-1, to endometrial receptors. J Interferon Res 1989;9:215–25.

    Article  PubMed  CAS  Google Scholar 

  58. Roberts RM, Farin CE, Cross JC. Trophoblast proteins and maternal recognition of pregnancy. In:Milligan SR, ed. Oxford reviews in reproductive biology. Oxford:Oxford University Press, 1990;12:147–80.

    Google Scholar 

  59. Whaley AE, Carroll RS, Nephew KP, Imakawa K. Molecular cloning of unique interferons from human placenta. Biol Reprod 1991;44 (suppl 1):186.

    Google Scholar 

  60. Schalue TK. Effects of intrauterine infusion of synthetic peptide fragments corresponding to ovine trophoblast interferon (otIFN) on oxytocin-induced endometrial inositol phosphate turnover in ewes. Biol Reprod 1992;46 (suppl 1):70.

    Google Scholar 

  61. Jarpe MA, Johnson HM, Bazer FW, Ott TL, Pontzer CH. Predicted structural motif of IFNT. Protein Eng (in review).

    Google Scholar 

  62. Senda T, Shimazu T, Matsuda S, et al. Three-dimensional crystal structure of recombinant murine interferon-beta. EMBO J 1992;11:3193–201.

    PubMed  CAS  Google Scholar 

  63. Pontzer CH, Ott TL, Bazer FW, Johnson HM. Localization of an antiviral site on the pregnancy recognition hormone, ovine trophoblast protein 1. Proc Natl Acad Sci USA 1990;87:5945–9.

    Article  PubMed  CAS  Google Scholar 

  64. Farin CE, Cross JC, Tindle NA, Murphy CN, Farin PW, Roberts RM. Induction of trophoblastic interferon expression in ovine blastocysts after treatment with double-stranded RNA. J Interferon Res 1991;11:151–7.

    Article  PubMed  CAS  Google Scholar 

  65. Adunyah SE, Unlap TM, Wagner F, Kraft AS. Regulation of c-jun expression and AP-1 enhancer activity of granulocyte-macrophage colony stimulating factor. J Biol Chem 1991;266:5670–5.

    PubMed  CAS  Google Scholar 

  66. Imakawa K, Helmer SD, Nephew KP, Meka CSR, Christenson RK. A novel role for GM-CSF:enhancement of pregnancy specific interferon production, ovine trophoblast protein-1. Endocrinology 1993;132:1869–71.

    Article  PubMed  CAS  Google Scholar 

  67. Xavier F, Guillomot M, Charlier M, Martal J, Gaye P. Co-expression of the protooncogene FOS (cfos) and an embryonic interferon (ovine trophoblastin) by sheep conceptuses during implantation. Biol Cell 1991;73:27–33.

    Article  PubMed  CAS  Google Scholar 

  68. Vallet JL, Bazer FW, Fliss MFV, Thatcher WW. The effect of ovine conceptus secretory proteins and purified ovine trophoblast protein-one on interestrous interval and plasma concentrations of prostaglandins Fat, E and 13,14-dihydro-15-keto-prostaglandin Fla in cyclic ewes. J Reprod Fertil 1988;84:493–504.

    Article  PubMed  CAS  Google Scholar 

  69. Martal J, Degryse E, Charpigny G, et al. Evidence for extended maintenance of the corpus luteum by uterine infusion of recombinant trophoblast a-interferon (trophoblastin) in sheep. J Endocrinol 1990;127:R5–8.

    Article  PubMed  CAS  Google Scholar 

  70. Soloff MS. Uterine receptor for oxytocin:effects of estrogen. Biochem Biophys Res Commun 1975;65:205–12.

    Article  PubMed  CAS  Google Scholar 

  71. Findlay JK, Clarke IJ, Swaney J, Colvin N, Doughton B. Oestrogen receptors and protein synthesis in caruncular and intercaruncular endometrium of sheep before implantation. J Reprod Fertil 1982;64:329–39.

    Article  PubMed  CAS  Google Scholar 

  72. Langer JA, Pestka S. Interferon receptors. Immunol Today 1989;9:393–400.

    Article  Google Scholar 

  73. Mogensen KE, Uze’G, Eid P. The cellular receptor of alpha-beta inter-ferons. Experientia 1989;45:500–8.

    Article  PubMed  CAS  Google Scholar 

  74. Schabe M, Princler GL, Faltynek CR. Characterization of the human type I interferon receptor by ligand blotting. Eur J Immunol 1988;18:2009–14.

    Article  Google Scholar 

  75. Uze’G, Lutfalla G, Gresser I. Genetic transfer of a functional human interferon a-receptor into mouse cells:cloning and expression of its cDNA. Cell 1990;60:225–34.

    Article  Google Scholar 

  76. Williams BRG. Signal transduction and transcriptional regulation of interferon-a-stimulated genes. J Interferon Res 1991;11:207–13.

    Article  PubMed  CAS  Google Scholar 

  77. Stark GR, Kerr IM. Interferon-dependent signaling pathways:DNA elements, transcription factors, mutations, and effects of viral proteins. J Interferon Res 1992;12:147–51.

    Google Scholar 

  78. Fu X-Y, Schindler C, Improta T, Aebersold R, Darnell JE Jr. The proteins of ISGF-3, the interferon a-induced transcriptional activator, define a gene family involved in signal transduction. Proc Natl Acad Sci 1992;89:7840–3.

    Article  PubMed  CAS  Google Scholar 

  79. Schindler C, Shuai K, Prezioso VR, Darnell JE Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 1992;257:809–13.

    Article  PubMed  CAS  Google Scholar 

  80. Velazquez L, Fellous M, Stark G, Pellegrini S. A protein tyrosine kinase in the interferon a/ßsignaling pathway. Cell 1992;70:313–22.

    Article  PubMed  CAS  Google Scholar 

  81. Scambia G, Panici PB, Battaglia F, et al. Effect of recombinant human interferon alpha2b on receptors for steroid hormones and epidermal growth factor in patients with endometrial cancer. Eur J Cancer 1991;27:51–3.

    Article  PubMed  CAS  Google Scholar 

  82. Angioli R, Untch M, Bernd-Uwe S, et al. Enhancement of progesterone receptor levels by interferons in AE-7 endometrial cancer cells. Cancer 1993;71:2776–81.

    Article  PubMed  CAS  Google Scholar 

  83. Dimitrov NV, Meyer CJ, Strander H, Einhorn S, Cantell K. Interferons as a modifier of estrogen receptors. Ann Clin Lab Sci 1984;14:32–9.

    PubMed  CAS  Google Scholar 

  84. van den Berg HW, Leahey WJ, Lynch M, Clarke R, Nelson J. Recombinant human interferon alpha increases oestrogen receptor expression in human breast cancer cells (ZR-75–1) and sensitizes them to the anti-proliferative effects of tamoxifen. Br J Cancer 1987;55:255–7.

    Article  PubMed  Google Scholar 

  85. Milgrom E, Dessen P, Zerah V, et al. Organization of the entire rabbit progesterone receptor mRNA and of the promoter and 5’flanking region of the gene. Nucleic Acids Res 1988;16:5459–72.

    Article  PubMed  Google Scholar 

  86. Kastner P, Krust A, Turcotte B, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 1990;9:1603–14.

    PubMed  CAS  Google Scholar 

  87. Ponglikitmongkol M, Green S, Chambon P. Genomic organization of the human oestrogen receptor gene. EMBO J 1988;7:3385–8.

    PubMed  CAS  Google Scholar 

  88. Ott TL, Mirando MA, Davis MA, Bazer FW. Effects of ovine conceptus secretory proteins and progesterone on oxytocin-stimulated endometrial production of prostaglandin and turnover of inositol phosphate in ovariectomized ewes. J Reprod Fertil 1992;95:19–29.

    Article  PubMed  CAS  Google Scholar 

  89. Flint APF, Parkinson RJ, Stewart HJ, Vallet JL, Lamming GE. Molecular biology of trophoblast interferons and studies of their effects in vivo. J Reprod Fertil 1991;43 (suppl 1):13–25.

    CAS  Google Scholar 

  90. Spencer TE, Ing NH, Bazer FW. Partial cloning of the ovine estrogen receptor (oER) mRNA and level of uterine ER mRNA during the estrous cycle and early pregnancy in ewes. Biol Reprod 1993;48 (suppl 1):189.

    Google Scholar 

  91. Gnatek GG, Smith LD, Duby RT, Godkin JD. Maternal recognition of pregnancy in the goat:effects of conceptus removal on interestrous intervals and characterization of conceptus protein production during early pregnancy. Biol Reprod 1989;41:655–64.

    Article  PubMed  CAS  Google Scholar 

  92. Homeida AM. Role of oxytocin during the oestrous cycle of ruminants with particular reference to the goat. Anim Breed Abstr 1986;54:263–8.

    Google Scholar 

  93. Gadsby JE, Balapure AK, Britt JH, Fitz FA. Prostaglandin F2a receptors on enzyme-dissociated pig luteal cells throughout the estrous cycle. Endocrinology 1990;126:787–95.

    Article  PubMed  CAS  Google Scholar 

  94. Thoreau E, Petridou B, Kelly PA, Djiane J, Mornon JP. Structural symmetry of the extracellular domain of the cytokine/growth hormone/prolactin receptor family and interferon receptors revealed by hydrophobic cluster analysis. FEBS Lett 1991;282:26–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Bazer, F.W., Spencer, T.E., Ott, T.L., Johnson, H.M. (1994). Cytokines and Pregnancy Recognition. In: Hunt, J.S. (eds) Immunobiology of Reproduction. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8422-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8422-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8424-3

  • Online ISBN: 978-1-4613-8422-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics