Skip to main content

Nonlinear Properties of the Peripheral Auditory System of Anurans

  • Conference paper
Comparative Studies of Hearing in Vertebrates

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The vertebrate ear is highly nonlinear. This is rather surprising since its vibrational amplitudes are so minute in response to normal sound pressures. Generally, one might expect a stable mechanical system to respond linearly when disturbed slightly from its resting state. Thus the nonlinear properties of the peripheral auditory system are of considerable interest inasmuch as they can provide valuable insight into the underlying transduction process in the ear. The two most prominent nonlinear properties are inter-modulation distortion and two-tone suppression. Their characteristics have been studied extensively in the mammalian auditory system by a number of investigators. To provide a comparative view, a series of electrophysiological experiments were conducted in order to determine the nonlinear behavior of the anuran’s peripheral auditory system. The results have interesting implications regarding the origin of nonlinearities, as well as the mechanical basis for frequency analysis, in the vertebrate inner ear in general. Before presenting these findings, several relevant studies of nonlinearities in the mammalian auditory system are summarized, followed by a brief review of the anatomy of the anuran’s ear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, P. J., Sachs, M. B.: Two-tone suppression in auditory nerve fibers: extension of a stimulus-response relationship. J. acoust. Soc. Amer. 59, 112–122(1976).

    Article  CAS  Google Scholar 

  • Arthur, R. M., Pfeiffer, R. R., Suga, N.: Properties of two-tone inhibition in primary auditory neurons. J. Physiol. 212, 593–609 (1971).

    PubMed  CAS  Google Scholar 

  • Buunen, T., Rhode, W. S.: Responses of fibers in the cat–s auditory nerve to the cubic difference tone. J. acoust. Soc. Amer. 64, 772–781 (1978).

    Article  CAS  Google Scholar 

  • Capranica, R. R.: Morphology and physiology of the auditory system. In: Frog Neurobiology. Uinas, R., Precht, W. (eds.). Berlin-Heidelberg: Springer, 1976, pp. 551–575.

    Google Scholar 

  • Capranica, R, R., Flock, A., Frishkopf, L. S.: Microphonic response from the inner ear of the bullfrog. J. acoust. Soc. Amer. 40, 1262 (1966).

    Article  Google Scholar 

  • Capranica, R. R., Moffat, A. J. M.: Excitation, inhibition and “disinhibition” in the inner ear of the toad (Bufo). J. acoust. Soc. Amer. 55, 480 (1974a).

    Google Scholar 

  • Capranica, R. R., Moffat, A. J. M.: Evidence for mechanical origin of peripheral inhibition in the anuran inner ear. J. acoust. Soc. Amer. 55, S85 (1974b).

    Google Scholar 

  • Capranica, R. R., Moffat, A. J. M.: Auditory responses from the saccule: further evidence for the mechanical origin of inhibition. J. acoust. Soc. Amer. 56, S12 (1974c).

    Article  Google Scholar 

  • Capranica, R. R., Moffat, A. J. M.: Selectivity of the peripheral auditory system of spadefoot toads (Scaphiopus couchi) for sounds of biological significance. J. comp. Physiol. 100, 231–249 (1975).

    Article  Google Scholar 

  • Capranica, R. R., Moffat, A. J. M.: Effects of anoxia on the response properties of auditory nerve fibers in the American toad. J. acoust. Soc. Amer. 59, S46 (1976).

    Article  Google Scholar 

  • Capranica, R. R., Moffat, A. J. M.: Place mechanism underlying frequency analysis in the toad’s inner ear. J. acoust. Soc. Amer. 62, S85 (1977).

    Article  Google Scholar 

  • Dallos, P., Cheatham, M. A., Ferraro, J.: Cochlear mechanics, nonlinearities and cochlear potentials. J. acoust. Soc. Amer. 55, 597–605 (1974).

    Article  CAS  Google Scholar 

  • Duifhuis, H.: An alternative approach to the second filter. In: Facts and Models in Hearing. Zwicker, E., Terhardt, E. (eds.). Berlin-Heidelberg-New York: Springer, 1974,p.103.

    Google Scholar 

  • Engebretson, A. M., Eldredge, D. H.: Model for the nonlinear characteristics of cochlear potentials. J. acoust. Soc. Amer. 44, 548–554 (1968).

    Article  CAS  Google Scholar 

  • Evans, E. F., Wilson, J. P.: The frequency selectivity of the cochlea. In: Basic Mechanisms of Hearing. Miller, A. R. (ed.). New York: Academic Press, 1973, pp. 519–551.

    Google Scholar 

  • Feng, A. S., Narins, P. M., Capranica, R. R.: Three populations of primary auditory fibers in the bullfrog (Rana catesbeiana): their peripheral origins and frequency sensitivities. J. comp. Physiol. 100, 221–229 (1975).

    Article  Google Scholar 

  • Frishkopf, L. S.: Excitation and inhibition of primary auditory neurons in the little brown bat. J. acoust. Soc. Amer. 36, 1016 (1964).

    Article  Google Scholar 

  • Frishkopf, L. S., Goldstein, M. H., Jr.: Responses to acoustic stimuli from single units in the eighth nerve of the bullfrog. J. acoust. Soc. Amer. 35, 1219–1228 (1963).

    Article  Google Scholar 

  • Geisler, C. D., van Bergeijk, W. A., Frishkopf, L. S.: The inner ear of the bullfrog. J. Morph. 114,43–58(1964).

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J. L.: Auditory nonlinearity. J. acoust. Soc. Amer. 41, 676–689 (1967).

    Article  CAS  Google Scholar 

  • Goldstein, J. L.: Comment on Rhode’s paper. In: Psychophysics and Physiology of Hearing. Evans, E. F., Wilson, J. P. (eds.). London-New York: Academic Press, 1977,p.41.

    Google Scholar 

  • Goldstein, J. L., Kiang, N. Y.-S.: Neural correlates of the aural combination tone 2f1 – f2 Proc. I.E.E.E. 56, 981–992 (1968).

    Google Scholar 

  • Greenwood, D. P., Merzenich, M. M., Roth, G.: Some preliminary observations on interrelations between two-tone suppression and combination tone driving in anteroventral cochlear nucleus of the cat. J. acoust. Soc. Amer. 59, 607–633 (1976).

    Article  CAS  Google Scholar 

  • Gross, N. B., Anderson, D. J.: Single unit responses recorded from the first order neuron of the pigeon auditory system. Brain Res. 101, 209–222 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Guinan, J. J., Peake, W. T.: Middle ear characteristics of anesthetized cats. J. acoust. Soc. Amer. 41, 1237–1261 (1967).

    Article  Google Scholar 

  • Hall, J. L.: Auditory distortion products f2 - fj and 2ft - f2. J. acoust. Soc. Amer. 51, 1863–1871 (1972a).

    Article  Google Scholar 

  • Hall, J. L.: Monaural phase effect: cancellation and reinforcement of distortion products f - ft and 2f1 - fa. J. acoust. Soc. Amer. 51, 1872–1881 (1972b).

    Article  Google Scholar 

  • Hall, J. L.: Two-tone distortion products in a nonlinear model of the basilar membrane. J. acoust. Soc. Amer. 56, 1818–1828 (1974).

    Article  CAS  Google Scholar 

  • Hall, J. L.: Spatial differentiation as an auditory “second filter”: assessment on a nonlinear model of the basilar membrane. J. acoust. Soc. Amer. 61, 520–524 (1977a).

    Article  CAS  Google Scholar 

  • Hall, J. L.: Two-tone suppression in a nonlinear model of the basilar membrane. J. acoust. Soc. Amer. 61, 802–810 (1977b).

    Article  CAS  Google Scholar 

  • Holton, T., Weiss, T. F.: Two-tone rate suppression in lizard cochlear nerve fibers, relation to receptor organ morphology. Brain Res. 159, 219–222 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Javel, E., Geisler, C. D., Ravindran, A.: Two-tone suppression in auditory nerve of the cat: rate-intensity and temporal analyses. J. acoust. Soc. Amer. 63, 1093- 1104(1978).

    Article  CAS  Google Scholar 

  • Johnstone, B. M., Taylor, K.: Mechanical aspects of cochlear function. In: Frequency Analysis and Periodicity Detection in Hearing. Plomp, R., Smoorenburg, G. F. (eds.). Leiden: Sijthoff, 1970, pp. 81–90.

    Google Scholar 

  • Johnstone, B. M., Yates, G. K.: Basilar membrane tuning curves in the guinea pig. J. acoust. Soc. Amer. 55, 584–587 (1974).

    Article  CAS  Google Scholar 

  • Kiang, N. Y.-S., Watanabe, T., Thomas, E. C., Clark, L. F.: Discharge Patterns of Single Fibers in the cat–s Auditory Nerve. Cambridge, Mass.: M.I.T. Press, 1965.

    Google Scholar 

  • Kim, D. O., Molnar, C. E.: Spatiotemporal patterns of primary and distortion components of cochlear responses to phase-locked two tones. Program for Society for Neuroscience Sixth Annual Meeting, Toronto, Canada (1976).

    Google Scholar 

  • Kim, D. O., Molnar, C. E.,Pfeiffer, R. R.: A system of nonlinear differential equations modeling basilar membrane motion. J. acoust. Soc. Amer. 54, 1517–1529 (1973).

    Article  CAS  Google Scholar 

  • Kim, D. O., Siegel, J. H., Molnar, E. C.: Cochlear nonlinear phenomena in two-tone responses. Proceedings of the Symposium on Models of the Auditory System and Related Signal Processing Techniques, Munster, Germany, September 1978.

    Google Scholar 

  • Kohllôffel, L. U. E.: A study of basilar membrane vibrations. II. The vibratory amplitude and phase pattern along the basilar membrane (post-mortem). Acustica 27, 68–81 (1972).

    Google Scholar 

  • Legouix, J.-P., Remond, M.-C., Greenbaum, H. B.: Interference and two-tone inhibition. J. acoust. Soc. Amer. 53, 409–419 (1973).

    Article  CAS  Google Scholar 

  • Lewis, E. R., Leverenz, E. L.: Direct evidence for an auditory place mechanism in the frog amphibian papilla. Soc. Neurosci. Abstr. 5, 25 (1979).

    Google Scholar 

  • Liff, H., Goldstein, M. H., Jr., Frishkopf, L. S., Geisler, C. D.: Best inhibitory frequencies of complex units in the eighth nerve of the bullfrog. J. acoust. Soc. Amer. 44,635–636(1968).

    Article  CAS  Google Scholar 

  • Liff, H., Goldstein, M. H., Jr.: Peripheral inhibition in auditory nerve fibers in the frog. J. acoust. Soc. Amer. 47, 1538–1547 (1970).

    Article  CAS  Google Scholar 

  • Moe, C. R.: An experimental study of subjective tones produced within the human ear. J. acoust. Soc. Amer. 14, 159–166 (1942).

    Article  Google Scholar 

  • Moffat, A. J. M., Capranica, R. R.: Effects of temperature on the response properties of auditory nerve fibers in the American toad. J. acoust. Soc. Amer. 60, S80 (1976).

    Article  Google Scholar 

  • Moffat, A. J. M., Capranica, R. R.: Middle ear sensitivity in anurans and reptiles measured by light scattering spectroscopy. J. comp. Physiol. 127, 97–107(1978).

    Article  Google Scholar 

  • Moffat, A. J. M., Capranica, R. R.: Phase cancellation of auditory nerve fiber responses to combination tones, f2 - f 1. J. acoust. Soc. Amer. 65, S82 (1979).

    Article  Google Scholar 

  • Nomoto, M., Suga, N., Katsuki, Y.: Discharge pattern and inhibition of primary auditory nerve fibers in the monkey. J. Neurophysiol. 27, 768–787 (1964).

    PubMed  CAS  Google Scholar 

  • Paton, J.: Microphonic potentials in the inner ear of the bullfrog. M. S. Thesis, Cornell University, Ithaca, New York, 1971.

    Google Scholar 

  • Pfeiffer, R. R., Molnar, C. E.: Characteristics of the (f2 - f) component in response patterns of single cochlear nerve fibers. J. acoust. Soc. Amer. 56, S221 (1974).

    Article  Google Scholar 

  • Pfeiffer, R. R., Molnar, C. E., Cox, J. R., Jr.: The representation of tones and combination tones in spike discharge patterns of single cochlear nerve fibers. In: Facts and Models in Hearing. Zwicker, E., Terhardt, E. (eds.). New York-Heidelberg- Berlin: Springer, 1974, pp. 323–331.

    Google Scholar 

  • Plomp, R.: Detectability threshold for combination tones. J. acoust. Soc. Amer. 37, 1110–1123 (1965).

    Article  CAS  Google Scholar 

  • Rhode, W. S.: Observations of the vibration of the basilar membrane in squirrel monkey using the Mössbauer technique. J. acoust. Soc. Amer. 49, 1218–1231 (1971).

    Article  Google Scholar 

  • Rhode, W. S.: Some observations on two-tone interaction measured with the Mössbauer effect. In: Psychophysics and Physiology of Hearing. Evans, E. F., Wilson, J. P. (eds.). London-New York: Academic Press, 1977, pp. 27–41.

    Google Scholar 

  • Rhode, W. S.: Some observations on cochlear mechanics. J. acoust. Soc. Amer. 64, 158–176 (1978).

    Article  CAS  Google Scholar 

  • Robbins, R. G., Bauknight, R. S., Honrubia, V.: Anatomical distribution of efferent fibers in the Vlllth cranial nerve of the bullfrog, Rana catesbeiana. Acta oto- laryng. (Stockh.) 64, 436–448 (1967).

    Article  CAS  Google Scholar 

  • Robertson, D.: Correspondence between sharp tuning and two-tone inhibition in primary auditory neurons. Nature 259, 477–478 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Sachs, M. B., Kiang, N. Y.-S.: Two-tone inhibition in auditory nerve fibers. J. acoust. Soc. Amer. 43, 1120–1128 (1968).

    Article  CAS  Google Scholar 

  • Sachs, M. B., Young, E. D., Lewis, R. H.: Discharge patterns of single fibers in the pigeon auditory nerve. Brain Res. 70, 431–447 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Schmiedt, R. A.: Single and two-tone effects in normal and abnormal cochleas: a study of cochlear microphonics and auditory-nerve units. Special Report, Institute for Sensory Research, Syracuse University, December, 1977.

    Google Scholar 

  • Siegel, J. H., Kim, D. O., Molnar, C. E.: Cochlear distortion products: effects of altering the organ of Corti. J. acoust. Soc. Amer. 61, S2 (1977).

    Article  Google Scholar 

  • Smoorenburg, G. F., Gibson, M. M., Kitzes, L. M., Rose, J. E., Hind, J. E.: Correlates of combination tones observed in the response of neurons in the anteroventral cochlear nucleus of the cat. J. acoust. Soc. Amer. 59, 945–962 (1976).

    Article  CAS  Google Scholar 

  • von Bekesy, G.: Experiments in Hearing. New York: McGraw-Hill, 1960.

    Google Scholar 

  • Wever, E. G.: The ear and hearing in the frog, Rana pipiens. J. Morph. 141, 461–478 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Wever, E. G., Bray, C. W., Lawrence, M.: The interference of tones in the cochlea. J. acoust. Soc. Amer. 12, 268–280 (1940).

    Article  Google Scholar 

  • Wilson, J. P.: Towards a model for cochlear frequency analysis. In: Psychophysics and Physiology of Hearing. Evans, E. F., Wilson, J. P. (eds.). London-New York: Academic Press, 1977, pp. 115–124.

    Google Scholar 

  • Wilson, J. P., Johnstone, J. R.: Capacitive probe measures of basilar membrane vibration. In: Symposium on Hearing Theory. Eindhoven, The Netherlands: Institute Perception Research, 1972, pp. 172–181.

    Google Scholar 

  • Wilson, J. P., Johnstone, J. R.: Basilar membrane and middle-ear vibration in guinea pig measured by capacitive probe. J. acoust. Soc. Amer. 57, 705–723 (1975).

    Article  CAS  Google Scholar 

  • Zwicker, E.: Der ungewöhnliche Amplitudengang der Nichtlinearen Verzerrungen des Ohres. Acustica 5, 67–74 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag New York Inc.

About this paper

Cite this paper

Capranica, R.R., Moffat, A.J.M. (1980). Nonlinear Properties of the Peripheral Auditory System of Anurans. In: Popper, A.N., Fay, R.R. (eds) Comparative Studies of Hearing in Vertebrates. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8074-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8074-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8076-4

  • Online ISBN: 978-1-4613-8074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics