Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 11))

Abstract

It has, of course, been known for a long time that when you work you get tired, and that if you work hard you breathe hard, and when you stop working you keep breathing hard for a while as you recover. It is also clear that walking up a mountain is more tiring than walking down a mountain, although the reason for this is not so obvious as it might appear. Chemical changes in the muscles during exercise have been studied for a remarkably long time. For instance, an increase of lactic acid in the muscles of deers which have been run to exhaustion was discovered by Berzelius in 1841, and as far back as 1871, Weiss showed that the glycogen content of muscles decreased with work. Even the fact that creatine was formed by working muscles was observed by Monari in 1889 and the liberation of inorganic phosphate from an organic compound during activity was recorded by Salkowski in 1890. The work of Fletcher & Hopkins (1907) supported the lactic acid theory of muscle contraction which was based on the belief that the breakdown of glucose to lactic acid was the immediate energy source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berzelius (1841). In Lehmann, C. G., Lehrbuch der physiologischen Chemie 1, 103, Leipzig (1850).

    Google Scholar 

  • Cain, D. F. (1960). Ph.D. Dissertation, University of Pennsylvania. The Immediate Energy Source for Muscular Contraction.

    Google Scholar 

  • Cain, D. F. & Davies, R. E. (1962). Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem. biophys. Res. Commun. 8, 361–366.

    Article  PubMed  CAS  Google Scholar 

  • Cain, D. F., Delluva, A. M. & Davies, R. E. (1958). Carnosine phosphate as phosphate donor in muscular contraction. Nature, Lond., 182, 720–721.

    Article  CAS  Google Scholar 

  • Cain, D. F., Kushmerick, M. J. & Davies, R. E. (1963). Hypoxanthine nucleotides and muscular contraction. Biochim. biophys. Acta 74, 735–746.

    Article  PubMed  CAS  Google Scholar 

  • Cain, D. F., Kushmerick, M. J. & Davies, R. E. (1964). Phosphoenolpyruvate, the phosphoglycenic acids and muscular contraction. Biochim. biophys. Acta 86, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Cheesman, D. F. & Whitehead, A. (1969). Possible role in contraction of structurally bound phosphate of muscle. Nature, Lond., 221, 736–739.

    Article  CAS  Google Scholar 

  • Davies, R. E. (1963). A molecular theory of muscle contraction: calcium-dependent contractions with hydrogen bond formation plus ATP-dependent extensions of part of the myosin-actin cross-bridges. Nature, Lond., 199, 1068–1074.

    Article  CAS  Google Scholar 

  • Davies, R. E., Cain, D. & Delluva, A. M. (1959). The energy supply for muscle contraction. Ann. N. Y. Acad. Sci. 81, 468–476.

    Article  PubMed  CAS  Google Scholar 

  • Davies, R. E., Kushmerick, M. J. & Larson, R. E. (1967). Professor A. V. Hill’s “Further Challenge to Biochemists”: ATP, activation, and the heat of shortening of muscle. Nature, Lond., 214 148–151.

    Article  CAS  Google Scholar 

  • Delluva, A. M., Larson, R. E., Haynes, D. H. & Davies, R. E. (1968). Is protein-bound phosphate an energy source in muscle contraction? Fed. Proc. 27, 821.

    Google Scholar 

  • Engelhardt, W. A. & Ljubimowa, M. N. (1939). Myosine and adenosinetriphosphatase. Nature, Lond., 144, 668–669.

    Article  CAS  Google Scholar 

  • Ennor, A. H. & Morrison, J. F. (1958). Biochemistry of the phosphagens and related guanidines. Physiol. Rev. 38, 631–674.

    PubMed  CAS  Google Scholar 

  • Fletcher, W. M. & Hopkins, F. G. (1907). Lactic acid in amphibian muscle. J. Physiol. 35, 247–309

    PubMed  CAS  Google Scholar 

  • Hill, A. V. (1950). A challenge to biochemists. Biochim. biophys. Acta 4, 4–11.

    Article  PubMed  CAS  Google Scholar 

  • Hill, A. V. (1966). A further challenge to biochemists. Biochem. Z. 345, 1–8.

    Google Scholar 

  • Infante, A. A., Klaupiks, D. & Davies, R. E. (19614). Length, tension and metabolism during short isometric contractions of frog sartorius muscles. Biochim. biophys. Acta 88, 215–217.

    Google Scholar 

  • Kushmerick, M. J. amp; Davies, R. E. (1969). The chemical energetics of muscle contraction. 2. The chemistry, efficiency and power of maximally working sartorius muscles. Proc. Roy. Soc. B,174 315–353.

    Google Scholar 

  • Kushmerick, M. J., Larson, R. E. & Davies, R. E. (1969). The chemical energetics of muscle contraction. I. Activation heat, heat of shortening and ATP utilization for activation-relaxation processes. Proc. Roy Soc. B,l74 293–313.

    Google Scholar 

  • Larson, R. E., Kushmerick, M. J., Haynes, D. H. & Davies, R. E. (1968). Internal work during maintained tension of isometric tetanus. Biophys. Soc. Abstr. 11th Ann. Mtg., A-8.

    Google Scholar 

  • Lohmann, K. (1934). Über die enzymatische Aufspaltung der Kreatinphosphorsäure; zugleich em Beitrag zum Chemismus der Muskelkontraktion. Biochem. Z. 271, 264–277.

    CAS  Google Scholar 

  • Lundsgaard, E. (1930). Weitere Untersuchungen über Muskelkontraktionen ohne Milchsäurebildung. Biochem. Z. 277, 51–83.

    Google Scholar 

  • Lundsgaard, E. (1934). Phosphagen-und Pyrophosphatumsatz in jodessigsäurevergifteten Muskeln. Biochem. Z. 269, 308–328.

    CAS  Google Scholar 

  • Meyerhof, O. (1920). Die Energieumwandlungen im Muskel. I. Über die Beziehungen der Milchsaure zur Wärmebildung und Arbeitsleistung des Muskels in der Anaerobiose. Pflüg. Arch. ges. Physiol. 182, 232–283.

    Article  CAS  Google Scholar 

  • Mommaerts, W. F. H. M. & Wallner, A. (1967). The break-down of adenosine triphosphate in the contraction cycle of the frog sartorius muscle. J. Physiol. Lond., 193, 343–357.

    PubMed  CAS  Google Scholar 

  • Monari, A. (1889). Jahresber. Tierchem., 296. Seen in von Muralt, A. (1950), The development of muscle-chemistry, a lesson in neurophysiology. Biochim. biophys. Acta 4, 126–129.

    Google Scholar 

  • Nauss, K. M. & Davies, R. E. (1966). Changes in inorganic phosphate and arginine during the development, maintenance, and loss of tension in the anterior byssus retractor muscle of Mytilus edulis. Biochem. Z. 345, 173–187.

    CAS  Google Scholar 

  • Salkowski, T. (1890). Z. kim. Med. 17, Suppl. 21. Seen in von Muralt, A. (1950), The development of muscle-chemistry, a lesson in neurophysiology. Biochim. biophys. Acta 4, 126–129.

    Google Scholar 

  • Seraydarian, M. W. & Williams, E. B. (1960). Studies on the acid insoluble fraction of frog’s muscle. Biochim. biophys. Acta 41, 352–355.

    Article  PubMed  CAS  Google Scholar 

  • Szent-Györgyi A. (1953). Chemistry of muscular contraction. Academic Press, New York, N. Y.

    Google Scholar 

  • Weiss, S. (1871). Sitzber. Akad. Wiss., Wien, 64, 1. Seen in von Muralt, A. (1950). The development of muscle-chemistry, a lesson in neurophysiology. Biochim. biophys. Acta 4, 126–129.

    Google Scholar 

  • Wilkie, D. R. (1970). Personal communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Davies, R.E. (1971). Energy-Rich Phosphagens. In: Pernow, B., Saltin, B. (eds) Muscle Metabolism During Exercise. Advances in Experimental Medicine and Biology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4609-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4609-8_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4611-1

  • Online ISBN: 978-1-4613-4609-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics