Skip to main content

Neuronal Uptake of Neurotransmitters and their Precursors: Studies with “Transmitter” Amino Acids and Choline

  • Chapter
New Concepts in Neurotransmitter Regulation

Abstract

Most neurotransmitters, except for acetylcholine, possess high affinity neuronal uptakes. With reasonably well established transmitter candidates such as catecholamines, serotonin and GABA, these uptake systems are studied with a view to characterizing the synaptic behavior of the transmitter in question. With more questionable transmitter candidates, such as the amino acids, before characterizing subtleties of their synaptic activities, it is crucial first to determine whether they are in fact neurotransmitters. In our laboratory, uptake studies have been employed to adduce evidence in support of certain amino acids as transmitters. Specifically, we have compared the synaptosomal accumulation of numerous amino acids and found that unlike most amino acids, glutamic and aspartic acids and glycine (in the spinal cord and brain stem) are transported by unique high affinity systems into distinct populations of synaptosomes. In this way neuronal uptake has provided powerful biochemical support for the proposition that these compounds are neurotransmitters in the mammalian central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aprison, M. and Werman, R. 1965. The distribution of glycine in cat spinal cord and roots. Life Sci. 4: 2075.

    Article  PubMed  CAS  Google Scholar 

  • Arregui, A., Logan, W.J. and Snyder, S.H. 1972. Specific glycine accumulating synaptosomes in the spinal cord of the rat. Proc. Natl. Acad. Sci., (in press).

    Google Scholar 

  • Askari, A. 1966. Uptake of some quaternary ammonium ions by human erythrocytes. J. Gen. Physiol. 49: 1147.

    PubMed  CAS  Google Scholar 

  • Birks, R.I. and Macintosh, F.C. 1961. Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39: 787.

    Article  CAS  Google Scholar 

  • Blasberg, R. 1968. Specificity of cerebral amino acid transport: a kinetic analysis. In: Progress in Brain Research (Eds. Lajtha, A. and Ford, D.H.) Elsevier, Amsterdam, Vol. 29, pp. 245–256.

    Google Scholar 

  • Blasberg, R.G., Levi, G. and Lajtha, A. 1970. A comparisoin of inhibition of steady state, net transport, and exchange fluxes of amino acids in brain slices. Biochim. Biophys. Acta 203: 464.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F.E. and Iversen, L.L. 1971. Localizing 3H-GABA in nerve terminals of rat cerebral cortex by electron microscopic autoradiography. Nature 229: 629.

    Article  Google Scholar 

  • Browning, E.T. 1971. Free choline formation by cerebral cortical slices from rat brain. Biochem. Biophys. Res. Comm., 45: 1586.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, H.N. and Liang, M. 1965. An amino acid transport system of unassigned fraction in the Erlich ascites tumor cell. J. Biol. Chem. 240: 3601.

    PubMed  CAS  Google Scholar 

  • Cleland, W.W. 1967. The statistical analysis of enzyme kinetic data. Adv. Enzymol. 29: 1.

    PubMed  CAS  Google Scholar 

  • Goyle, J.T. and Snyder, S.H. 1969. Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas. Pharmac. Exp. Ther. 170: 221.

    Google Scholar 

  • Curtis, D.R., Hosli, L., Johnston, G.A.R. and Johnston, I.H. 1968. The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp. Brain Res. 5: 235.

    Article  PubMed  CAS  Google Scholar 

  • Davidoff, R.A., Graham, L.T., Shank, R.P., Werman, R. and Aprison, M.H. 1967. Changes in amino acid concentrations associated with loss of spinal interneurons. J. Neurochem. 14: 1025.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, I. and Kennedy, E.T. 1969. Carrier-mediated transport of choline into synaptic nerve endings. J. Biol. Chem. 244: 3258.

    PubMed  CAS  Google Scholar 

  • Dixon, M. 1953. The determination of enzyme inhibitor constants. Biochem. J. 55: 170.

    PubMed  CAS  Google Scholar 

  • Feldberg, W. and Lin, R.C.Y. 1950. Synthesis of acetylcholine in wall of digestive tract. J. Physiol. 111: 96.

    PubMed  CAS  Google Scholar 

  • Glowinski, J. and Iversen, L.L. 1966. Regional studies of catecholamines in the rat brain. I. The disposition of [3H] norepinephrine, [3H] dopamine and [3H] dopa in various regions of the brain. J. Neurochem. 13: 655.

    Article  PubMed  CAS  Google Scholar 

  • Graham, L.T., Jr., Shank, R.P., Werman, R. and Aprison, M.H. 1967. Distribution of some synaptic transmitter suspects in cat spinal cord: glutamic acid, aspartic acid, gamma-amino-butyric acid, glycine and glutamine. J. Neurochem. 14: 465.

    Article  PubMed  CAS  Google Scholar 

  • Green, A.I. and Haubrich, D.R. 1971. Accumulation of radioactivity after incubation of rat brain slices with -choline. Trans. Amer. Soc. Neurochem. 2: 75.

    Google Scholar 

  • Haga, T. 1971. Synthesis and release of (14C) acetylcholine in synaptosomes. J. Neurochem. 18: 781.

    Article  PubMed  CAS  Google Scholar 

  • Helbronn, E. and Carlsson, B.J. 1960. Qualitative separation of choline esters by means of high voltage paper electrophoresis. Chromatog. 4: 257.

    Article  Google Scholar 

  • Hemsworth, B.A., Darmer, K.I., Jr., and Bosmann, H.B. 1971. The incorporation of choline into isolated synaptosomal and synaptic vesicle fractions in the presence of quaternary ammonium compounds. Neuropharmacol. 10: 109.

    Article  CAS  Google Scholar 

  • Hökfelt, T. 1970. Electron microscopic identification of monoamine nerve ending particles in rat brain homogenates. Brain Res. 22: 147.

    Article  PubMed  Google Scholar 

  • Hökfelt, T. and Ljundahl, A. 1971, Light and electron microscope autoradiography on spinal cord slices after incubation with labelled glycine. Brain Res. 32: 189.

    Article  PubMed  Google Scholar 

  • Johnston, G.A.R. 1968. The intraspinal distribution of some depressant amino acids. J. Neurochem. 15: 1013.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G.A.R., DeGroat, W.C. and Curtis, D.R. 1969. Tetanus toxin and amino acid levels in cat spinal cord. J. Neurochem. 16: 797.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, G.A.R. and Iversen, L.L. 1971. Glycine uptake in rat CNS slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex. J. Neurochem. 18: 1951.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M.H., Green, A.I., Snyder, S.H. and Gfeller, E. 1970. Separation of synaptosomes storing catecholamines and gamma-aminocutyric acid in rat corpus striatum. Brain Res. 21: 405.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M.J., Shaskan, E.G. and Snyder, S.H. 1971. The subcellular distribution of endogenous and exogenous serotonin in brain tissue: comparison of synaptosomes storing serotonin, norepinephrine and α-aminobutyric acid. J. Neurochem. 18: 333.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M.J., Roth, R.H. and Aghajanian, G.K. 1972. A reduction in synaptosomal uptake of serotonin in rats with midbrain raphe lesions. J. Pharmac. Exp. Ther. 181: 36.

    CAS  Google Scholar 

  • Kuhar, M.J., Roth, R.H. and Aghajanian, G.K. 1972 a. Choline uptake into synaptosomes from the hippocampus; reduction after electrolytic destruction of the medial septal nucleus. Fed. Proc. 31: 516Abs.

    Google Scholar 

  • Lewis, P.R. and Shute, C.C.D. 1967. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain 90: 521.

    Article  PubMed  CAS  Google Scholar 

  • Lineweaver, H. and Burk, D. 1934. The determination of enzyme dissociation constants. J. Amer. Chem. Soc. 56: 658.

    Article  CAS  Google Scholar 

  • Logan, W.J. and Snyder, S.H. 1971. Unique high affinity uptake systems for glycine, glutamic and aspartic acids in central nervous tissue of the rat. Nature 234: 297.

    Article  PubMed  CAS  Google Scholar 

  • Logan, W.J. and Snyder, S.H. 1972. High affinity uptake systems for glycine, glutamic and aspartic acids in synaptosomes of rat central nervous tissue. Brain Res. 42: 413.

    Article  PubMed  CAS  Google Scholar 

  • McLennan, H. 1970. Synaptic Transmission (2nd Edition), Philadelphia: W.B. Saunders Co., pp. 78–105.

    Google Scholar 

  • Mangan, J.L. and Whittaker, V.P. 1966. The distribution of free amino acids in subcellular fractions of guinea-pig brain. Biochem. J. 98: 128.

    PubMed  CAS  Google Scholar 

  • Marchbanks, R.M. 1969. The conversion of 14C-choline to 14C-acetylcholine in synaptosomes in vitro. Biochem. Pharmacol. 18: 1763.

    Article  PubMed  CAS  Google Scholar 

  • Martin, K. 1968. Concentrative accumulation of choline by human erythrocytes. J. Gen. Physiol. 51: 497.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A. and Dennison, M. 1971. Autoradiographic localization of tritiated glycine at “flat-vesicle” synapses in spinal cord. Brain Res. 32: 195.

    Article  PubMed  CAS  Google Scholar 

  • Potter, L.T. 1968. Uptake of choline by nerve endings isolated from the rat cerebral cortex. In: The Interaction of Drug and Subcellular Components of Animal Cells (Ed. Campbell, P.N.) London: Churchill, pp. 293.

    Google Scholar 

  • Potter, L.T., Glober, A.S. and Saelens, J.K. 1968. Choline acetyl-transferase from rat brain. J. Biol. Chem. 243: 3864.

    PubMed  CAS  Google Scholar 

  • Schuberth, J., Sundwall, A., Sorbell, B. and Lindell, J.O. 1965. Uptake of choline by mouse brain slices. J. Neurochem. 13: 347.

    Article  Google Scholar 

  • Schultz, S.G., Yu-Tu, L., Alvarez, O.O. and Curran, P.F. 1970. Dicarboxylic amino acid influx across brush border of rabbit ileum. Effects of amino acid charge on the sodium-amino acid interaction. J. Gen. Physiol. 56: 621.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, S.H., Logan, W.J., Bennett, J.P. and Arregui, A. 1973. Amino acids as central nervous transmitters: Biochemical studies. Neurosciences Res, (in press).

    Google Scholar 

  • Sung, C.P. and Johnstons, R.M. 1965. Evidence for active transport of choline in rat kidney cortex slices. Can. J. Biochem. 43: 1111.

    Article  PubMed  CAS  Google Scholar 

  • Tagliamonte, A., Tagliamonte, P., Perez-Cruet, J. and Gessa, G.L. 1971. Increase of brain tryptophan caused by drugs which stimulate serotonin synthesis. Nature 229: 125.

    Article  CAS  Google Scholar 

  • Werman, R., Davidoff, R.A. and Aprison, M.H. 1968. Inhibitory of glycine on spinal neurons in the cat. J. Neurophysiol. 31: 81.

    PubMed  CAS  Google Scholar 

  • Whittaker, V.P. 1965. The application of subcellular fractionation techniques to the study of brain function. Prog. Biophys. Molec. Biol. 15: 39.

    Article  CAS  Google Scholar 

  • Winter, C.G. and Christensen, H.N. 1965. Contrasts in neutral amino acid transport by rabbit erythrocytes and reticulocytes. J. Biol. Chem. 240: 3594.

    PubMed  CAS  Google Scholar 

  • Wofsey, A.R., Kuhar, M.J. and Snyder, S.H. 1971. A unique synaptosomal fraction which accumulates glutamic and aspartic acids in brain tissue. Proc. Natl. Acad. Sci. 68: 1102.

    Article  PubMed  CAS  Google Scholar 

  • Wurtman, R.J. and Fernstrom, J.D. 1972. L-Tryptophan, L-tyrosine and the control of brain monoamine biosynthesis. In: Perspectives in Neuropharmacology (Ed. Snyder, S.H.), New York: Oxford Univ. Press, pp. 143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Snyder, S.H., Yamamura, H.I., Pert, C.B., Logan, W.J., Bennett, J.P. (1973). Neuronal Uptake of Neurotransmitters and their Precursors: Studies with “Transmitter” Amino Acids and Choline. In: Mandell, A.J. (eds) New Concepts in Neurotransmitter Regulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4574-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4574-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4576-3

  • Online ISBN: 978-1-4613-4574-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics