Skip to main content

Electrical Activity of Neurosecretory Terminals and Control of Peptide Hormone Release

  • Chapter
Peptides in Neurobiology

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

Nerve cells specialized for the release of peptide hormones to the circulation, i.e., classic neurosecretory cells, retain their full complement of neuronal properties. Their activity is under control of the CNS through excitatory and inhibitory synaptic mediation. They integrate these influences with their own capabilities for endogenous activity to ultimately generate action potentials propagated to the secretory terminals. They represent the “final neuroendocrine pathway” (Knowles, 1974; E. Scharrer, 1965). In this chapter, I wish to examine the relationship between those action potentials that are propagated to the secretory terminals and release of peptide hormones from them. How much of the extensive, detailed knowledge of the mechanisms governing the release of transmitters at synapses (for reviews, see, for example, Katz, 1969; Gerschenfeld, 1973) is applicable to release of peptides from neurosecretory terminals? Are there modifications of the electrical activity of neurosecretory cells, particularly their terminals, that are related to peptide secretion? For example, is the longer duration of action potentials, well documented for the neuron somata, also a feature of neurosecretory axons and terminals, and what is its significance? What is the significance for hormone release of the “spontaneous” activity often recorded from neurosecretory cells, and of firing in bursts or patterned activity?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alving, B. O., 1968, Spontaneous activity in isolated somata of Aplysia pacemaker neurons, J. Gen. Physiol 45:29–45.

    Google Scholar 

  • Andrews, P.M., Copeland, D.E., and Fingerman, M., 1971, Ultrastructural study of the neurosecretory granules in the sinus gland of the blue crab Callinectes sapidus, Z. Zeilforsch. 113:461–471.

    CAS  Google Scholar 

  • Arch, S., 1972, Polypeptide secretion from the isolated parietovisceral ganglion of Aplysia californica, J. Gen. Physiol. 59:47–59.

    PubMed  CAS  Google Scholar 

  • Baker, P.F., Hodgkin, A.L., and Ridgeway, E.B., 1971, Depolarization and calcium entry in squid giant axons, J. Physiol. London 218:709–755.

    PubMed  CAS  Google Scholar 

  • Barker, J.L., and Gainer, H., 1975a, Studies on bursting pacemaker potential activity in molluscan neurons. I. Membrane properties and ionic contributions, Brain Res. 84:461–477.

    PubMed  CAS  Google Scholar 

  • Barker, J.L., and Gainer, H., 1975b, Studies on bursting pacemaker potential activity in molluscan neurons. II. Regulation by divalent cations, Brain Res. 84:479–500.

    PubMed  CAS  Google Scholar 

  • Barker, J.L., Ifshin, M.S., and Gainer, H., 1975, Studies on bursting pacemaker potential activity in molluscan neurons. III. Effects of hormones, Brain Res. 84:501–513.

    PubMed  CAS  Google Scholar 

  • Barrett, E., and Barrett, J.N., 1976, Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones, J. Physiol. 255:737–774.

    PubMed  CAS  Google Scholar 

  • Berlind, A., 1972, Teleost caudal neurosecretory system; release of urotensin II from isolated urophyses, Gen. Comp. Endocrinol. 18:557–560.

    PubMed  CAS  Google Scholar 

  • Berlind, A., 1976, Cellular dynamics in invertebrate neurosecretory systems, Int. Rev. Cytol. in press.

    Google Scholar 

  • Berlind, A., and Cooke, I.M., 1968, Effect of calcium omission on neurosecretion and electrical activity of crab pericardial organs, Gen. Comp. Endocrinol. 11:458–463.

    PubMed  CAS  Google Scholar 

  • Berlind, A., and Cooke, I.M., 1970, Release of a neurosecretory hormone as peptide by electrical stimulation of crab pericardial organs, J. Exp. Biol. 53:679–686.

    PubMed  CAS  Google Scholar 

  • Berlind, A., and Cooke, I.M., 1971, The role of divalent cations in electrically elicited release of neurohormone from crab pericardial organs, Gen Comp. Endocrinol. 17:60–72.

    PubMed  CAS  Google Scholar 

  • Berlind, A., Cooke, I.M., and Goldstone, M.W., 1970, Do the monoamines in crab pericardial organs play a role in peptide secretion? J. Exp. Biol. 53:669–677.

    PubMed  CAS  Google Scholar 

  • Bern, H., and Mason, C., 1976, Cellular biology of the neurosecretory neuron, in: Handbook of Physiology, American Physiology Society, Washington, D.C., in press.

    Google Scholar 

  • Bliss, D.E., and Welsh, J.H., 1952, The neurosecretory system of brachyuran Crustacea, Biol. Bull. 103:157–169.

    Google Scholar 

  • Bunt, A.H., and Ashby, E.A., 1967, Ultrastructure of the sinus gland of the crayfish Procambarus clarkii, Gen. Comp. Physiol. 9:334–342.

    CAS  Google Scholar 

  • Bunt, A., and Ashby, E., 1968, Ultrastructural changes in the crayfish sinus gland following electrical stimulation, Gen. Comp. Endocrinol. 10:376–382.

    Google Scholar 

  • Cook, D.J., and Milligan, J.V., 1972, Electrophysiology and histology of the medial neurosecretory cells in adult male cockroaches, Periplaneta americana, J. Insect. Physiol. 18:1197–1214.

    CAS  Google Scholar 

  • Cooke, I.M., 1964, Electrical activity and release of neurosecretory material in crab pericardial organs, Comp. Biochem. Physiol. 13:353–366.

    PubMed  CAS  Google Scholar 

  • Cooke, I.M., 1967, Potentials recorded intracellularly from neurosecretory terminals, Amer. Zool. 7:732–733.

    Google Scholar 

  • Cooke, I.M., 1971, Calcium dependent depolarizing responses recorded from crab neurosecretory terminals, Proc. Int. Union Physiol. Sci. 9:119.

    Google Scholar 

  • Cross, B.A., 1974, The neurosecretory impulse, in: NeurosecretionThe Final Neuroendocrine Pathway (F. Knowles and L. Vollrath, eds.), pp. 115–128, Springer-Verlag, New York.

    Google Scholar 

  • Cross, B.A., Dyball, R.E.J., Dyer, R.G., Jones, C.W., Lincoln, D.W., Morris, J.F., and Pickering, B.T., 1975, Endocrine neurons, Recent Prog. Horm. Res. 31:243–286.

    PubMed  CAS  Google Scholar 

  • Daniel, A.R., and Lederis, K., 1967, Release of neurohypophysial hormones in vitro, J. Physiol. 190:171–187.

    PubMed  CAS  Google Scholar 

  • del Castillo, J., and Katz, B., 1954, Statistical factors involved in neuromuscular facilitation and depression, J. Physiol. 124:574–585.

    Google Scholar 

  • Dicker, S.E., 1966, Release of vasopressin and oxytocin from isolated pituitary glands of adult and new-born rats, J. Physiol. 185:429–444.

    PubMed  CAS  Google Scholar 

  • Douglas, W.W., 1968, Stimulus-secretion coupling: The concept and clues from chromaffin and other cells, Br. J. Pharmacol. 34:451–474.

    PubMed  CAS  Google Scholar 

  • Douglas, W.W., 1973, How do neurons secrete peptides? Exocytosis and its consequences, including “synaptic vesicle” formation, in the hypothalamo-neurohypophyseal system, Recent Prog. Brain Res. 39:21–38.

    CAS  Google Scholar 

  • Douglas, W.W., and Poisner, A.M., 1964a, Stimulus-secretion coupling in a neurosecretory organ and the role of calcium in the release of vasopressin from the neurohypophysis, J. Physiol. 172:1–18.

    CAS  Google Scholar 

  • Douglas, W.W., and Poisner, A.M., 1964b, Calcium movement in the neurohypophysis of the rat and its relation to the release of vasopressin, J. Physiol. 172:19–30.

    PubMed  CAS  Google Scholar 

  • Douglas, W.W., and Sorimachi, M., 1971, Electrically evoked release of vasopressin from isolated neurohypophyses in sodium-free media, Br. J. Pharmacol. 42:647P.

    Google Scholar 

  • Dreifuss, J.J., and Ruf, K.B., 1972, A transpharyngeal approach to the rat hypothalamus, in: Experiments in Physiology and Biochemistry (G. Kerkut, ed.), pp. 213–228, Academic, London.

    Google Scholar 

  • Dreifuss, J., Kalnins, I., Kelly, J.S., and Ruf, K.B., 1971, Action potentials and release of neurohypophysial hormones in vitro, J. Physiol. 215:805–817.

    PubMed  CAS  Google Scholar 

  • Durand, J.B., 1956, Neurosecretory cell types and their secretory activity in the crayfish, Biol. Bull. 111:62–76.

    Google Scholar 

  • Dyball, R.E., 1971, Oxytocin and ADH secretion in relation to electrical activity in antidromically identified supraoptic and paraventricular units, J. Physiol. 214:245–256.

    PubMed  CAS  Google Scholar 

  • Dyball, R.E., and Dyer, R.G., 1971, Plasma oxytocin concentration and paraventricular neurone activity in rats with diencephalic islands and intact brains, J. Physiol. 216:227–235.

    PubMed  CAS  Google Scholar 

  • Dyball, R.E., and Pountney, P.S., 1973, Discharge patterns of supraoptic and paraventricular neurones in rats given a 2 per cent NaCl solution instead of drinking water, J. Endocrinol. 56:91–98.

    PubMed  CAS  Google Scholar 

  • Fatt, P., and Katz, B., 1952, Spontaneous subthreshold activity at motor nerve endings, J. Physiol. 117:109–128.

    PubMed  CAS  Google Scholar 

  • Femlund, P., and Josefsson, L., 1972, Crustacean color-change hormone; amino acid sequence and chemical synthesis, Science 177:173–175.

    Google Scholar 

  • Finlayson, L.H., and Osborne, M.P., 1975, Secretory activity of neurons and related electrical activity, in: Adv. Comp. Physiol. Biochem. 6:165–258 (O. Lowenstein, ed.), Academic Press, New York.

    Google Scholar 

  • Fraenkenhauser, B., and Hodgkin, A.L., 1957, The action of calcium on the electrical properties of squid axons, J. Physiol. 137:218–244.

    Google Scholar 

  • Frazier, W.T., Kandel, E.R., Kupfermann, I., Waziri, R., and Coggeshall, R.E., 1967, Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica, J. Neurophysiol. 30:1288–1351.

    Google Scholar 

  • Fridberg, G., Iwasaki, S., Yagi, K., Bern, H., Wilson, D.M., and Nishioka, R., 1966, Relation of impulse conduction to electrically induced release of neurosecretory material from the urophysis of the teleost fish Tilapia mossambica, J. Exp. Zool. 161:137–150.

    PubMed  CAS  Google Scholar 

  • Gabe, M., 1966, Neurosecretion, Pergamon Press, Oxford, 872 pp.

    Google Scholar 

  • Gainer, H., 1972a, Patterns of protein synthesis in individual, identified, molluscan neurons, Brain Res. 39:369–386.

    PubMed  CAS  Google Scholar 

  • Gainer, H., 1972b, Effects of experimentally induced diapause on the electrophysiology and protein synthesis of identified molluscan neurons, Brain Res. 39:387–402.

    PubMed  CAS  Google Scholar 

  • Gainer, H., 1972c, Electrophysiological behavior of an endogenously active neurosecretory cell, Brain Res. 39:403–418.

    PubMed  CAS  Google Scholar 

  • Geduldig, D., and Junge, D., 1968, Sodium and calcium components of action potentials in Aplysia giant neurone, J. Physiol. 199:347–365.

    PubMed  CAS  Google Scholar 

  • Gersch, M., Richter, K., Böhm, G.-A., and Stürzebecher, J., 1970, Selektive Ausschüttung von Neurohormonen nach elektrischer Reizung der Corpora Cardiaca von Periplaneta americana in vitro, J. Insect Physiol 16:1991–2013.

    CAS  Google Scholar 

  • Gerschenfeld, H.M., 1973, Chemical transmission in invertebrate nervous systems and neuromuscular junctions, Physiol. Rev. 53:1–119.

    PubMed  CAS  Google Scholar 

  • Gillary, H.L., and Kennedy, D., 1969, Neuromuscular effects of impulse pattern in a crustacean motor neuron, J. Neurophysiol. 32:607–612.

    PubMed  CAS  Google Scholar 

  • Hagiwara, S., and Tasaki, I., 1958, A study of the mechanism of impulse transmission across the giant synapse of the squid, J. Physiol. 143:114–137.

    PubMed  CAS  Google Scholar 

  • Harris, G.W., Manabe, Y., and Ruf, K.B., 1969, A study of the parameters of electrical stimulation of unmyelinated fibres in the pituitary stalk, J. Physiol. 203:67–81.

    PubMed  CAS  Google Scholar 

  • Haylett, B.A., Weatherby, T.M., and Cooke, I.M., 1975, Electrically elicited release of neurohormone from isolated crab sinus gland and its dependence on Ca++, Physiologist 18:242.

    Google Scholar 

  • Hayward, J.N., 1974, Physiological and morphological identification of hypothalamic magnocellular neuroendocrine cells in goldfish preoptic nucleus, J. Physiol. 239:103–124.

    PubMed  CAS  Google Scholar 

  • Hayward, J.N., 1975, Neural control of the posterior pituitary, Annu. Rev. Physiol. 37:191–210.

    PubMed  CAS  Google Scholar 

  • Hayward, J.N., and Jennings, D.P., 1973a, Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetized monkeys. I. Functional cell types and their anatomical distribution in the supraoptic nucleus and the internuclear zone, J. Physiol. 232:515–543.

    PubMed  CAS  Google Scholar 

  • Hayward, J.N., and Jennings, D.P., 1973b, Activity of magnocellular neuroendocrine cells in the hypothalamus of unanaesthetized monkeys II. Osmosensitivity of functional cell types in the supraoptic nucleus and the internuclear zone, J. Physiol. 232:545–572.

    PubMed  CAS  Google Scholar 

  • Hodgson, E., and Geldiay, S., 1959, Experimentally induced release of neurosecretory materials from roach corpora cardiaca, Biol. Bull. 117:275–283.

    Google Scholar 

  • Ishida, A., 1967, The effect of tetrodotoxin on calcium-dependent link in stimulus-secretion coupling in neurohypophysis, Jpn. J. Physiol. 17:308–320.

    PubMed  CAS  Google Scholar 

  • Ishida, A., 1968, Stimulus-secretion coupling on the oxytocin release from the isolated posterior pituitary lobe, Jpn. J. Physiol. 18:471–480.

    PubMed  CAS  Google Scholar 

  • Ishida, A., 1970, The oxytocin release and the compound action potential evoked by electrical stimulation of the isolated neurohypophysis of the rat, Jpn. J. Physiol. 20:84–96.

    PubMed  CAS  Google Scholar 

  • Iwasaki, S., and Satow, Y., 1969, Spontaneous grouped discharge of secretory neuron soma in X-organ of crayfish, Procambarus clarkii, J. Physiol. Soc. Jpn. 31:629–630.

    CAS  Google Scholar 

  • Iwasaki, S., and Satow, Y., 1971, Sodium- and calcium-dependent spike potentials in the secretory neuron soma of the X-organ of the crayfish, J. Gen. Physiol. 57:216–238.

    PubMed  CAS  Google Scholar 

  • Jahan-Parwar, B., Smith, M., and von Baumgarten, R., 1969, Activation of neurosecretory cells in Aplysia by osphradial stimulation, Amer. J. Physiol. 216:1246–1257.

    PubMed  CAS  Google Scholar 

  • Kado, R.T., 1973, Aplysia giant cell: Soma-axon voltage clamp differences, Science 182:843.

    PubMed  CAS  Google Scholar 

  • Kandel, E.R., 1964, Electrical properties of hypothalamic neuroendocrine cells, J. Gen. Physiol. 47:691–717.

    PubMed  CAS  Google Scholar 

  • Kater, S., 1968, Cardioaccelerator release in Periplaneta americana (L.) Science 160:765–767.

    PubMed  CAS  Google Scholar 

  • Kater, S., and Kaneko, C., 1972, An endogenously bursting neuron in the gastropod mollusc, Helisoma trivolvis, J. Comp. Physiol. 79:1–14.

    Google Scholar 

  • Katz, B., 1969, The Release of Neural Transmitter Substances, Liverpool University Press, Liverpool, 60 pp.

    Google Scholar 

  • Katz, B., and Miledi, R., 1967a, A study of synaptic transmission in the absence of nerve impulses, J. Physiol. 192:407–436.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1967b, The release of acetylcholine from nerve endings by graded electric pulses, Proc. R. Soc. London Ser. B. 167:23–38.

    CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1969a, Tetrodotoxin-resistant electric activity in presynaptic terminals, J. Physiol. 203:459–487.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1969b, Spontaneous and evoked activity of motor nerve endings in calcium Ringer, J. Physiol. 203:689–706.

    PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1970, Further study of the role of calcium in synaptic transmission, J. Physiol 207:789–801.

    PubMed  CAS  Google Scholar 

  • Kleinhaus, A., and Prichard, J., 1975, Calcium dependent action potentials produced in leech Retzius cells by tetraethylammonium chloride, J. Physiol. 246:351–361.

    PubMed  CAS  Google Scholar 

  • Kleinholz, L.H., 1966, Separation and purification of crustacean eyestalk hormones, Amer. Zool. 6:161–167.

    CAS  Google Scholar 

  • Knowles, F., 1974, Twenty years of neurosecretion, in: NeurosecretionThe Final Neuroendocrine Pathway (F. Knowles and L. Vollrath, eds.), pp. 3–11, Springer-Verlag, New York.

    Google Scholar 

  • Koketsu, K., and Nishi, S., 1969, Calcium and action potentials of bullfrog sympathetic ganglion cells, J. Gen. Physiol. 53:608–628.

    PubMed  CAS  Google Scholar 

  • Kupfermann, I., 1970, Stimulation of egg laying by extract of neuroendocrine cells (bag cells) of abdominal ganglion of Aplysia, J. Neurophysiol. 33:877–881.

    PubMed  CAS  Google Scholar 

  • Kupfermann, I., and Kandel, E.R., 1970, Electrophysiological properties and functional interconnections of two symmetrical neurosecretory clusters (bag cells) in abdominal ganglion of Aplysia, J. Neurophysiol. 33:865–876.

    PubMed  CAS  Google Scholar 

  • Kupfermann, I., and Weiss, K.R., 1976, Water regulation by a presumptive hormone contained in identified cell R15 of Aplysia, J. Gen. Physiol. 67:113–123.

    PubMed  CAS  Google Scholar 

  • Lincoln, D.W., 1974, Dynamics of oxytocin secretion, in: NeurosecretionThe Final Neuroendocrine Pathway (F. Knowles and L. Vollrath, eds.), pp. 129–133, Springer-Verlag, New York.

    Google Scholar 

  • Lincoln, D.W., and Wakerley, J.B., 1975, Factors governing the periodic activation of supraoptic and paraventricular neurosecretory cells during suckling in the rat, J. Physiol. 250:443–461.

    PubMed  CAS  Google Scholar 

  • Llinás, R., Blinks, J.R., and Nicholson, C., 1972, Calcium transient in presynaptic terminals in squid giant synapse: Detection with aequorin, Science 176:1127–1129.

    PubMed  Google Scholar 

  • Maddrell, S., and Gee, J., 1974, Potassium-induced release of the diuretic hormones of Rhodniusprolixus and Glossina austeni: Ca dependence, time course and localization of neurohaemal areas, J. Exp. Biol. 61:155–171.

    PubMed  CAS  Google Scholar 

  • Mallart, A., and Martin, A.R., 1967, An analysis of facilitation of transmitter release at the neuromuscular junction of the frog, J. Physiol. 193:679–694.

    PubMed  CAS  Google Scholar 

  • Martin, A.R., and Pilar, G., 1964, An analysis of electrical coupling at synapses in the avian ciliary ganglion, J. Physiol. 171:454–475.

    PubMed  CAS  Google Scholar 

  • Meech, R.W., and Standen, N.B., 1975, Potassium activation in Helix aspersa neurones under voltage clamp: A component mediated by calcium influx, J. Physiol. 249:211–239.

    PubMed  CAS  Google Scholar 

  • Meves, H., and Vogel, W., 1973, Calcium inward currents in internally perfused giant axons, J. Physiol. 235:225–266.

    PubMed  CAS  Google Scholar 

  • Mikiten, T.M., and Douglas, W., 1965, Effect of calcium and other ions on vasopressin release from rat neurohypophysis stimulated electrically in vitro, Nature London 207:302.

    PubMed  CAS  Google Scholar 

  • Miledi, R., and Thies, R., 1971, Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low-calcium solutions, J. Physiol. 212:245–257.

    PubMed  CAS  Google Scholar 

  • Normann, T., 1973, Membrane potential of the corpus cardiacum neurosecretory cells of the blowfly, Calliphora erythrocephala, J. Insect Physiol. 19:303–318.

    Google Scholar 

  • Normann, T., 1974, Calcium-dependence of neurosecretion by exocytosis, J. Exp. Biol. 61:401–409.

    PubMed  CAS  Google Scholar 

  • Normann, T., 1976, Neurosecretion by exocytosis, Int. Rev. Cytol. 45: in press.

    Google Scholar 

  • Normann, T., and Duve, H., 1969, Experimentally induced release of a neurohormone influencing hemolymph trehalose level in Calliphora erythrocephala (Diptera), Gen. Comp. Endocrinol. 12:449–459.

    Google Scholar 

  • Passano, L.M., 1953, Neurosecretory control of molting in crabs by the X-organ sinus gland complex, Physiol. Comp. Oecol. 3:155–189.

    CAS  Google Scholar 

  • Pérez-González, M.D., 1957, Evidence of hormone containing granules in sinus glands of the fiddler crab Uca pugilator, Biol. Bull. 113:426–441.

    Google Scholar 

  • Perkins, E.B., 1928, Color changes in Crustaceans, especially in Palaemonetes, J. Exp. Zool. 50:71–195.

    CAS  Google Scholar 

  • Poisner, A.M., 1973, Stimulus-secretion coupling in the adrenal medulla and posterior pituitary gland, in: Frontiers in Neuroendocrinology (W. Ganong and L. Martini, eds.), pp. 33–59, Oxford, New York.

    Google Scholar 

  • Potter, D.D., 1956, Observations on the neurosecretory system of portunid crabs, Ph.D. thesis, Harvard University.

    Google Scholar 

  • Potter, D.D., 1958, Observations on the neurosecretory system of portunid crabs, in: 2, Internationales Symposium über Neurosekretion (W. Bargmann, B. Hanström, E. Scharrer, and B. Scharrer, eds.), pp. 113–118, Springer-Verlag, Berlin.

    Google Scholar 

  • Rehm, ML, 1959, Observations on the localization and chemical constitution of neurosecretory material in nerve terminals in Carcinus maenas, Acta Histochem. 7:88–106.

    PubMed  CAS  Google Scholar 

  • Reuter, H., 1973, Divalent cations as charge carriers in excitable membranes, Prog. Biophys. Mol. Biol. 26:3–43.

    Google Scholar 

  • Rubin, R.P., 1974, Calcium and the Secretory Process, Plenum Press, New York, 189 pp.

    Google Scholar 

  • Scharrer, B., and Kater, S., 1969, Neurosecretion XV. An electron microscopic study of the corpora cardiaca of Periplaneta americana after experimentally induced hormone release, Z. Zellforsch. 95:177–186.

    PubMed  CAS  Google Scholar 

  • Scharrer, E., 1965, The final common pathway in neuroendocrine integration, Arch. Anat. Microsc. Morphol. Exp. 54:359–370.

    PubMed  CAS  Google Scholar 

  • Standen, N.B., 1975a, Calcium and sodium ions as charge carriers in the action potential of an identified snail neurone, J. Physiol. 249:241–252.

    PubMed  CAS  Google Scholar 

  • Standen, N.B., 1975b, Voltage-clamp studies of the calcium inward current in an identified snail neurone: Comparison with the sodium inward current, J. Physiol. 249:253–268.

    PubMed  CAS  Google Scholar 

  • Stinnakre, J., and Tauc, L., 1969, Central neuronal response to activation of osmoreceptors in the osphradium of Aplysia, J. Exp. Biol. 51:347–361.

    CAS  Google Scholar 

  • Vincent, J.D., Arnauld, E., and Bioulac, B., 1972a, Activity of osmosensitive single cells in the hypothalamus of the behaving monkey during drinking, Brain Res. 44:371–384.

    PubMed  CAS  Google Scholar 

  • Vincent, J.D., Arnauld, E., and Nicolescu-Catargi, A., 1972b, Osmoreceptors and neurosecretory cells in the supraoptic complex of unanesthetized monkey, Brain Res. 45:278–281.

    PubMed  CAS  Google Scholar 

  • Wald, F., 1972, Ionic differences between somatic and axonal action potentials in snail giant neurones, J.Physiol. 220:267–281.

    PubMed  CAS  Google Scholar 

  • Wilkens, J.L., and Mote, M.I., 1970, Neuronal properties of the neurosecretory cells in the fly Sarcophaga bullata, Experientia 26:275–276.

    PubMed  CAS  Google Scholar 

  • Yagi, K., and Bern, H.A., 1965, Electrophysiological analysis of the response of the caudal neurosecretory system of Tilapia mossambica to osmotic manipulations, Gen. Comp. Endocrinol. 5:509–526.

    PubMed  CAS  Google Scholar 

  • Yagi, K., Bern, H.A., and Hagadorn, I.R., 1963, Action potentials of neurosecretory neurons in the leech Theromyzon rude, Gen. Comp. Endocrinol. 3:490–495.

    Google Scholar 

  • Yamashita, H., Koisumi, K., and Brooks, C., 1970, Electrophysiological studies of neurosecretory cells in the cat hypothalamus, Brain Res. 20:462–466.

    PubMed  CAS  Google Scholar 

  • Zeballos, G.A., Thomborough, J.R., and Rothballer, A.B., 1975, Neurohypophysial electrical activity in the anesthetized cat, Neuroendocrinology 18:104–114.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Cooke, I.M. (1977). Electrical Activity of Neurosecretory Terminals and Control of Peptide Hormone Release. In: Gainer, H. (eds) Peptides in Neurobiology. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-4130-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-4130-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4132-1

  • Online ISBN: 978-1-4613-4130-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics