Skip to main content

Electrically Neutral Ion Transport in Biomembranes

  • Chapter
Physiology of Membrane Disorders

Abstract

The purpose of this chapter is to discuss mechanisms for the transfer of ions across biomembranes which do not result in any net transfer of electrical charges. To begin with, we consider the measurement of current flow across membranes, in order to show that some ion flows are not detected by this measurement technique. Then, we develop the physical-chemical ideas behind the formation of ion pairs, and discuss several examples relevant to ion fluxes across red blood cells. No attempt has been made to consider all examples of electrically neutral exchanges that take place in biomembranes; rather, attention has been focused on principles and examples in erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjerrum, N. 1926. Studier over Kromiklorid. Kgl. Danske Videnskab. Selskab. 4: 1 – 123.

    Google Scholar 

  2. Bockris, J. O. M., and A. K. N. Reddy. 1973. Modern Electrochemistry. Plenum, New York. pp. 251 – 267.

    Google Scholar 

  3. Arrhenius, S. 1887. Über die Dissociation der in Wasser gelösten Stoffe. Z. Phys. Chem. 1: 631 – 648.

    Google Scholar 

  4. Handbook of Chemistry and Physics. 1975. 56th ed. CRC Press, Cleveland, Ohio. p. 152.

    Google Scholar 

  5. Garrels, R. M., M. E. Thompson, and R. Siever. 1961. Control of carbonate solubility by carbonate complexes. Am. J. Sei. 259: 24 – 45.

    Article  CAS  Google Scholar 

  6. Garrels, R. M., and M. E. Thompson. 1962. A chemical model for sea water at 25°C and one atmosphere total pressure. Am. J. Sci. 260: 57 – 66.

    Article  CAS  Google Scholar 

  7. Funder, J., and J. O. Wieth. 1967. Effects of some monovalent anions on fluxes of Na and K and on glucose metabolism of ouabain treated human red cells. Acta Physiol. Scan. 71: 168 – 185.

    Article  CAS  Google Scholar 

  8. Funder, J., and J. O. Wieth. 1974. Human red cell sodium and potassium in metabolic alkalosis. Scand. J. Clin. Lab. Invest. 34: 49 – 59.

    Article  PubMed  CAS  Google Scholar 

  9. Funder, J., and J. O. Wieth. 1974. Combined effects of digitalis therapy and of plasma bicarbonate on human red cell sodium and potassium. Scand. J. Clin. Lab. Invest. 34: 153 – 160.

    Article  PubMed  CAS  Google Scholar 

  10. Schatzmann, H. J. 1953. Herzglykoside als Hemmstoffe für den Aktiven kalium und natrium Transport durch die Erythrocytenmambran. Helv. Physiol. Pharmacol. Acta 11: 346 – 354.

    PubMed  CAS  Google Scholar 

  11. Weith, J. O., M. Dalmark, R. B. Gunn, and D. C. Tosteson. 1973. The transfer of monovalent inorganic anions through the red cell membrane. In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds. Thieme, Stuttgart, pp. 71 – 76.

    Google Scholar 

  12. Dalmark, M., and J. O. Wieth. 1972. Temperature dependence of chloride, bromide, iodide, thiocyanate, and salicylate transport in human red cells. J. Physiol. (Lond.) 224: 553 – 610.

    Google Scholar 

  13. Dalmark, M. 1976. Effects of halides and bicarbonate on chloride transport in human red blood cells. J. Gen. Physiol. 67: 223 – 234.

    Article  PubMed  CAS  Google Scholar 

  14. Kaplan, J., and H. Passow. 1974. Effects of phlorizin on net chloride movements across the valinomycin- treated erythrocyte membrane. J. Membr. Biol. 19: 179 – 194.

    Article  PubMed  CAS  Google Scholar 

  15. Tosteson, D. C., and J. F. Hoffman. 1960. Regulation ol cell volume by active cation transport in high and low potassium sheep red cells. J. Gen. Physiol. 44: 169 – 194.

    Article  PubMed  CAS  Google Scholar 

  16. Davis, J. Personal communication.

    Google Scholar 

  17. Haas, M., J. M. Schooler, and D. C. Tosteson. 1975. Coupling of lithium to sodium transport in human red cells. Nature 258: 425 – 427.

    Google Scholar 

  18. Davies, C. W. 1962. Ion Association. Butterworth, London, p. 169.

    Google Scholar 

  19. Wieth, J. O. 1971. Erythrocytes Selektive Ionpermea- bilitet. FADL’s Forlag, Copenhagen, pp. 157 – 163.

    Google Scholar 

  20. Wieth, J. O. 1970. Effects of monovalent cations on sodium permeability of human red cells. Acta Physiol. Scand. 79: 76 – 87.

    Article  PubMed  CAS  Google Scholar 

  21. Sillen, L. G. 1971. Stability Constants of Metal-Ion Complexes. Special Publication No. 25 and No. 17. The Chemical Society, Burlington House, London.

    Google Scholar 

  22. McCorkell, R. H., M. M. Sein, and J. W. Irvine, Jr. 1968. Extraction of HMX4 acids by solvents of high dielectric constant. J. Inorg. Nucl. Chem. 30:1155– 1160.

    Google Scholar 

  23. Koskikallio, J., and S. Syijapalo. 1965. Association of mineral acids in water with dioxane-water mixtures. Acta Chem. Scand. 19: 429 – 437.

    Article  CAS  Google Scholar 

  24. Gunn, R. B., J. O. Wieth, and D. C. Tosteson. 1975. Some effects of low pH on chloride exchange in human red blood cells. J. Gen. Physiol 65: 731 – 749.

    Article  PubMed  CAS  Google Scholar 

  25. Brazy, P. C., and R. B. Gunn. Unpublished observations.

    Google Scholar 

  26. Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane. Solutions to four relevant electrostatic problems. Nature 221: 844 – 846.

    Article  PubMed  CAS  Google Scholar 

  27. Tosteson, D. C. 1959. Halide transport in red blood cells. Acta Physiol. Scand. 46: 19 – 41.

    Article  CAS  Google Scholar 

  28. Brahm, J. 1975. Chloride permeability in human red cells at 0–38°C. Fifth International Biophysics Congress, Copenhagen, p. 319 (Abstract).

    Google Scholar 

  29. Gunn, R. B., M. Dalmark, D. C. Tosteson, and J. O. Wieth. 1973. Characteristics of chloride transport in human red blood cells. J. Gen. Physiol. 61: 185 – 206.

    Article  PubMed  CAS  Google Scholar 

  30. Brahm, J. 1977. Temperature dependent changes of chloride transport kinetics in human red cells. J. Gen. Physiol. 70: 283 – 306.

    Article  PubMed  CAS  Google Scholar 

  31. Deuticke, B., and E. Gerlach. 1967. Beeinflussung von Form und Phosphat-Permeabilität menschlichen Erythrocytes durch Hämolysine, Benzol-Derivate und pharmakologisch aktive Substanzen. Klin. Wochenschr. 45: 977 – 983.

    Article  PubMed  CAS  Google Scholar 

  32. Gunn, R. B., and D. C. Tosteson. 1976. The effect of 2,4,6-trinitro-m-cresol on cation and anion transport in sheep red blood cells. J. Gen. Physiol. 57: 593 – 609.

    Article  Google Scholar 

  33. Gunn, R. B., and J. A. Cooper. 1975. Effect of local anesthetics on chloride transport in erythrocytes. J. Membr. Biol 25: 311 – 326.

    Article  PubMed  Google Scholar 

  34. Brazy, P. C., and R. B. Gunn. 1975. Furosemide inhibition of chloride transport in human red blood cells. Physiologist 18:151 (Abstr.).

    Google Scholar 

  35. Cousin, J. L., and R. Motais. 1976. The role of carbonic anhydrase inhibitors on anion permeability into ox red blood cells. J. Physiol (Lond.) 256: 61 – 80.

    CAS  Google Scholar 

  36. Gunn, R. B., and R. G. Kirk. 1976. Anion transport and membrane morphology. J. Membr. Biol 27:265– 282.

    Google Scholar 

  37. Hunter, M. J. 1971. A quantitative estimate of the non- exchange restricted chloride permeability of the human red cell. J. Physiol 218: 49P – 50 P.

    PubMed  CAS  Google Scholar 

  38. Tosteson, D. C., R. B. Gunn, and J. O. Wieth. 1973. Chloride and hydroxyl ion conductance of sheep red cell membranes. In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds. Thieme, Stuttgart, pp. 62 – 66.

    Google Scholar 

  39. Lassen, U. V., and O. Sten-Knudsen. 1968. Direct measurements of membrane potential and membrane resistance of human red cells. J. Physiol (Lond.) 195: 681 – 696.

    CAS  Google Scholar 

  40. Lassen, U. V. 1972. Membrane potential and membrane resistance of red cells. In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rorth and P. Astrup, eds. Munksgaard, Copenhagen, pp. 291 – 304.

    Google Scholar 

  41. Stoner, L. C., and F. M. Kregenow. 1976. Chloride fluxes and voltage measurements in single red blood cells. Biophys. J. 16: 170a.

    Google Scholar 

  42. Gunn, R. B. Unpublished observations.

    Google Scholar 

  43. Passow, H. 1969. Passive ion permeability of the erythrocyte membrane. Prog. Biophys. 19: 424 – 446.

    Article  Google Scholar 

  44. Cabantchik, Z. I., and A. Rothstein. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J. Membr. Biol 15: 207 – 226.

    Article  PubMed  CAS  Google Scholar 

  45. Lepke, S., H. Fasold, M. Pring, and H. Passow. 1976. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4′,4′-diisothiocyanostilbene-2,2′-disulfonic acids (DIDS) and its dihydro derivative (H2DIDS). J. Membr. Biol 29: 147 – 177.

    Article  PubMed  CAS  Google Scholar 

  46. Rothstein, A., Z. I. Cabantchik, M. Balshin, and R. Juliano. 1975. Enhancement of anion permeability in lecithin vesicles by hydrophobic proteins extracted from red blood cell membranes. Biochem. Biophys. Res. Commun. 64: 144 – 150.

    Article  PubMed  CAS  Google Scholar 

  47. Gunn, R. B. 1972. A titratable carrier model for both mono- and divalent anion transport in human red blood cells. In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rorth and P. Astrup, eds. Munksgaard, Copenhagen, pp. 823 – 827.

    Google Scholar 

  48. Bretscher, M. S. 1971. A major protein which spans the human erythrocyte membrane. J. Mol Biol 59:351– 357.

    Google Scholar 

  49. Steck, T. L. 1974. The organization of proteins in the human red blood cell membrane. A review. J. Cell Biol 62: 1 – 19.

    Article  PubMed  CAS  Google Scholar 

  50. Nicolson, G. L., and S. J. Singer. 1971. Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: Application to saccharides bound to cell membranes. Proc. Natl Acad. Sci. U.S.A. 68: 942 – 945.

    Article  PubMed  CAS  Google Scholar 

  51. Patlak, C. S. 1957. Contributions to the theory of active transport. II. The gate type non-carrier mechanism and generalizations concerning tracer flow, efficiency, and measurement of energy expenditure. Bull Math. Biophys. 19: 209 – 235.

    Article  Google Scholar 

  52. Duhm, J. and B. F. Becker. 1978. Studies on Na+- dependent Li+ countertransport and bicarbonate-stimulated Li+ transport in human erythrocytes. In: Drugs, Hormones, and Membranes. L. Bolis, J. F. Hoffman, and R. W. Staub, eds. Raven Press, N.Y. In press.

    Google Scholar 

  53. Funder, J., and D. C. Tosteson. 1977. Effects of bicarbonate on lithium transport in human red cells. Proc. Intl. Union. Physiol Sci. 13:248, Abstract 724 (Paris).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Publishing Corporation

About this chapter

Cite this chapter

Gunn, R.B. (1978). Electrically Neutral Ion Transport in Biomembranes. In: Andreoli, T.E., Hoffman, J.F., Fanestil, D.D. (eds) Physiology of Membrane Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3958-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3958-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3960-1

  • Online ISBN: 978-1-4613-3958-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics