Skip to main content

Spermiation — the sperm release process: Ultrastructural observations and unresolved problems

  • Chapter
Ultrastructure of Reproduction

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 2))

Abstract

The release of germ cells from the epithelium of the seminiferous tubule signals the end of spermatogenesis and the beginning of the passage of these highly differentiated cells through the excurrent duct system. At the time of release germ cells no longer should be termed spermatids but spermatozoa or, simply, sperm. Sperm have attained virtually their final form at the time they are liberated; however, they are functionally immature and still lack the capacity to fertilize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vitale-Calpe R, Burgos MH: The mechanism of spermiation in the hamster I. Ultrastructure of spontaneous spermiation. J Ultrastruc Res (31): 381–393, 1970.

    Article  CAS  Google Scholar 

  2. Burgos MH, Sacerdote FL, Russo J: Mechanism of sperm release. In: Regulation of Mammalian Reproduction. Segal SJ, Grozier R, Corfman PA, Condliffe PG (eds), Charles C. thomas, Publishers, Springfield, 111, 1970, pp 166–182.

    Google Scholar 

  3. Fawcett DW, Phillips DM: Observations on the release of spermatozoa and on changes in the head during passage through the epididymis. J Reprod Fert Suppl (6): 405–418, 1969.

    Google Scholar 

  4. Dietert SE: Fine structure of the formation and fate of the residual bodies of mouse spermatozoa with evidence for the participation of lysosomes. J Morph (120): 317–346, 1966.

    Article  Google Scholar 

  5. Sapsford CS, Rae CA: Ultrastructural studies on Sertoli cells and spermatids in the bandicoot and ram during the movement of mature spermatids into the lumen of the seminiferous tubule. Aust J Zool (17): 415–445, 1969.

    Article  Google Scholar 

  6. Fawcett DW: Ultrastructure and function of the Sertoli cell. In: Handbook of Physiology. Male Reproductive System. Vol. V. Section 7: Endocrinology. Hamilton DW, Greep RO (eds), American Physiological Society, Washington, D.C. Waverly Press Inc., Baltimore, Md, 1975, pp 21–53.

    Google Scholar 

  7. Ross MH: The Sertoli cell junctional specialization during spermio-genesis and at spermiation. Anat Rec (186): 79–103, 1976.

    Article  Google Scholar 

  8. Russell LD, Clermont Y: Anchoring device between Sertoli cells and late spermatids in rat seminiferous tubules. Anat Rec (185): 259–278, 1976.

    Article  PubMed  CAS  Google Scholar 

  9. Russell LD: Observations on rat Sertoli ectoplasmic (‘junctional’) specializations in their association with germ cells of the rat testis. Tissue and Cell (9): 475–498, 1977b.

    Article  PubMed  CAS  Google Scholar 

  10. Russell LD: Sertoligerm cell interrelations: A review. Gamete Research. (3): 179–202, 1980b.

    Article  Google Scholar 

  11. Gravis CJ: A scanning electron microscopic study of the Sertoli cell and spermiation in the Syrian hamster. Am J Anat (151): 21–38, 1978a.

    Article  PubMed  CAS  Google Scholar 

  12. Fawcett DW: Interrelation of cell types within the seminiferous epithelium and their implications for control of spermatogenesis. In: The Regulation of Mammalian Reproduction. Segal S, Grozier R, Corfman P, Condliffe, P (eds), C.C. Thomas Pub., Springfield, 111, 1970, pp 91–99.

    Google Scholar 

  13. Ross MH: Sertoli-Sertoli junctions and Sertoli-spermatid junctions after efferent ductule ligation and lanthanum treatment. Am J Anat (148): 49–56, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Romrell LJ, Ross MH: Characterization of Sertoli cell-germ cell junctional specializations in dissociated testicular cells. Anat Rec (193): 23–42, 1979.

    Article  PubMed  CAS  Google Scholar 

  15. Russell LD: Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Amer J Anat (148): 313–328, 1977a.

    Article  PubMed  CAS  Google Scholar 

  16. Sapsford CS: The development of the Sertoli cell of the rat and mouse; Its existence as a mononucleate unit. J Anat (97): 225–238, 1963.

    PubMed  CAS  Google Scholar 

  17. Brokelmann J: Fine structure of germ cells and Sertoli cells during the cycle of the seminiferous epithelium in the rat. Z Zellforsch Mikrosk Anat (59): 820–850, 1963.

    Article  PubMed  CAS  Google Scholar 

  18. Nicander L: An electron microscopical study of cell contacts in the seminiferous tubules of some mammals. Z Zellforsch Mikrosk Anat (83): 375–397, 1967.

    Article  PubMed  CAS  Google Scholar 

  19. Flickinger C, Fawcett DW: The junctional specializations of Sertoli cells in the seminiferous epithelium. Anat Rec (158): 207–221, 1967.

    Article  PubMed  CAS  Google Scholar 

  20. Sapsford CS, Rae CA, Cleland KW: Ultrastructural studies on maturing spermatids and on Sertoli cells in the bandicoot (Perameles nasuta). Aust J Zool (17): 195–292, 1969.

    Article  Google Scholar 

  21. Gravis CJ: Ultrastructural observations on spermatozoa retained within the seminiferous epithelium after treatment with dibutyryl cyclic AMP. Tissue and Cell (12): 309–322, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Ross MH, Dobler J: The Sertoli cell junctional specializations and their relationship to the germinal epithelium as observed after efferent ductule ligation. Anat Rec (183): 267–292, 1975.

    Article  PubMed  CAS  Google Scholar 

  23. Russell LD: Further observations on tubulobulbar complexes formed by late spermatids and Sertoli cells in the rat testis. Anat Rec (194): 213–232, 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Fouquet.IP: Le mecanisme de la spermiation chez le hamster: Signification des relations entre cellules de Sertoli et spermatides. C R Acad Sci D 275: 2025–2028, 1972.

    CAS  Google Scholar 

  25. Fouquet.IP: La spermiation et la formation dus corps résiduals chez le hamster: Rôle des cellules de Sertoli. J Microscopie (19): 161–168, 1974.

    Google Scholar 

  26. Franke WD, Grund C, Fink A, Weber K, Jockusch BM, Zentgraf H, Osborn M: Location of actin in the microfilament bundles associated with the junctional specializations between Sertoli cells and spermatids. Biol Cell (31): 7–14, 1978.

    Google Scholar 

  27. Regaud C: Etude sur la structure des tubes séminiféres et sur la spermatogénése chez les mammiferes. Arch Anat Micr 4: 101–156, 1901.

    Google Scholar 

  28. Firlit CF, Davis JR: Morphogenesis of the residual body of the mouse testis. Quart J Microsc Sci (106): 93–98, 1965.

    Google Scholar 

  29. Clermont Y, McCoshen J, Hermo L: Evolution of the endoplasmic reticulum in the Sertoli cell cytoplasm encapsulating the heads of late spermatids in the rat. Anat Rec (196): 83–99, 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Russell LD, Malone J: A study of Sertoli-spermatid tubulobulbar complexes in selected mammals. Tissue and Cell (12): 263–285, 1981.

    Google Scholar 

  31. Cooper GW, Bedford JM: Asymetry of spermiation and sperm surface charge patterns over the giant acrosome in the musk shrew Suncus murinus. J Cell Biol. (69): 415–428, 1976.

    Article  PubMed  CAS  Google Scholar 

  32. Russell LD: Spermatid-Sertoli tubulobulbar complexes as devices for elimination of cytoplasm from the head region of late spermatids of the rat. Anat Rec (194): 233–246, 1979b.

    Article  PubMed  CAS  Google Scholar 

  33. Russell LD: Deformities in the head region of late spermatids of hypophysectomized-hormone-treated rats. Anat Rec (197): 21–31, 1980a.

    Article  PubMed  CAS  Google Scholar 

  34. Gravis CJ: Inhibition of spermiation in the Syrian hamster using dibutryl cyclic-AMP. Cell Tiss Res (192): 241–248, 1978b.

    Article  CAS  Google Scholar 

  35. Clermont Y, Leblond CP, Messier B: Duré du cycle de l’épithélium séminal du rat. Archs Anat Microsc Morp Exp (48): 37–55, 1959.

    CAS  Google Scholar 

  36. Malone J: On the sperm release mechanism and the final separation of the spermatid from its attachments. Anat Rec (196): 118a, 1980.

    Google Scholar 

  37. Russell LD, Myers P, Ostenburg J, Malone J: Sertoli ectoplasmic specializations during spermatogenesis. In: Testicular Development, Structure, and Function. Stein berger A, Steinberger E (eds), Raven Press, New York, 1980b, pp 55–63.

    Google Scholar 

  38. Gravis CJ: Interrelationships between Sertoli cells and germ cells in the Syrian hamster. Z mikrosk Anat Forsch Leipzig (93): 321–342, 1979.

    CAS  Google Scholar 

  39. Friend DS, Farquhar MG: Functions of coated vesicles during protein absorption in the rat vas deferens. J Cell Biol (35): 357–376, 1967.

    Article  PubMed  CAS  Google Scholar 

  40. Clermont Y, Morales C: Transformation of Sertoli cell processes invading the cytoplasm of elongating spermatids of the rat. Anat Rec (202): 32–33A, 1982.

    Google Scholar 

  41. Millette CF, Bellve AR: Selective partitioning of plasma membrane antigens during mouse spermatogenesis. Develop Biol (79): 309–324, 1980.

    Article  PubMed  CAS  Google Scholar 

  42. Perey B, Clermont Y, Leblond CP: The wave of the seminiferous epithelium in the rat. Am J Anat (108): 47–78: 1961.

    Google Scholar 

  43. Barack B: Transport of spermatozoa from seminiferous tubules to epididymis in the mouse: A histological and quantitative study. J Reprod Fert (16): 35–48, 1968.

    Article  CAS  Google Scholar 

  44. Setchell BP, Scott TW, Voglmayr JK, Waites GMH: Characteristics of testicular spermatozoa and the fluid which transports them into the epididymis. Biol Reprod (1): 40–66, 1969.

    Article  PubMed  Google Scholar 

  45. Niemi N, Kormano M: Contractility of the seminiferous tubule of the postnatal rat testis and its response to oxytocin. Ann Med Exp Biol Fenn. (43): 40–42, 1965.

    PubMed  CAS  Google Scholar 

  46. Volgmayr JK: Output of spermatozoa and fluid by the testis of the ram and its response to oxytocin. J Reprod Fert (43): 119–122, 1975.

    Article  Google Scholar 

  47. Davis JR, Langford GA, Kirby PJ: The testicular capsule. In: The Testis. Johnson AD, Gomes WR, Vandemark NL (eds), Academic Press, New York and London, 1970, pp 282–337.

    Google Scholar 

  48. Clermont Y, Harvey SC: Duration of the cycle of the seminiferous epithelium of normal, hypophysectomized and hypophysectomized-hormone treated albino rats. Endocrinology (76): 80–89, 1965.

    Article  PubMed  CAS  Google Scholar 

  49. Lacroix M, Smith FE, Fritz IB: Secretion of plasminogen activator by Sertoli cell enriched cultures. Molec and Cell Endocrinol (9): 227–236, 1977.

    Article  CAS  Google Scholar 

  50. Lacroix M, Parvinen M, Fritz IB: Localization of testicular plasminogen activator in discrete portions (Stage VII and VIII) of the seminiferous tubule. Biol Reprod (25): 143–146, 1981.

    Article  PubMed  CAS  Google Scholar 

  51. Aoki A: Induction of sperm release by microtubule inhibitors in rat testis. European J Cell Biol (22): 467, 1980.

    Google Scholar 

  52. Russell LD, Malone JP, McCurdy DS: Effect of microtubule disrupting agents, colchicine and vinblastine, on seminiferous tubule structure in the rat. Tissue and Cell (13): 349–367, 1981.

    Article  PubMed  CAS  Google Scholar 

  53. Bressler RS, Ross MH: Differentation of peritubular myoid cells of the testis: Effects of intratesticular implantation of newborn mouse testis into normal and hypophysectomized adults. Biol Reprod 6: 148–159, 1972.

    PubMed  CAS  Google Scholar 

  54. Hovatta O: Effect of androgens and antiandrogens on the development of the myoid cells of the rat seminiferous tubules (organ culture). Z Zellforsch Mikrosk Anat (131): 299–308, 1972.

    Article  PubMed  CAS  Google Scholar 

  55. Suvanto O, Kormano M: The relationship between in vitro contractions of the rat seminiferous tubules and the cyclic stage of the seminiferous epithelium. J Reprod Fert (21): 227–232, 1970.

    Article  CAS  Google Scholar 

  56. Ellis LC, Buhrley LE: Inhibitory effects of melatonin, prostaglandin El, cyclic-AMP, dibutyrylcyclic AMP and theophylline on rat seminiferous tubular contractility in vitro. Biol Reprod (19): 217–222, 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Boston

About this chapter

Cite this chapter

Russell, L.D. (1984). Spermiation — the sperm release process: Ultrastructural observations and unresolved problems. In: Van Blerkom, J., Motta, P.M. (eds) Ultrastructure of Reproduction. Electron Microscopy in Biology and Medicine, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3867-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3867-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3869-7

  • Online ISBN: 978-1-4613-3867-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics