Skip to main content

The Behaviour of Metals Under Ballistic Impact at Sub-Ordnance Velocities

  • Chapter
Material Behavior Under High Stress and Ultrahigh Loading Rates

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((SAMC,volume 29))

Abstract

The behaviour of a material when struck by a projectile depends strongly on the velocity of impact. A useful method of characterizing the damage regime is by means of a dimensionless “damage number” (1), D:

$${\text{D}} = \rho _{\text{T}}{\text{v}}^2 /{\text{Y}}_{\text{T}}$$
(1)

Here ρT is the density of the target material and YT is its flow stress: v is the impact velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. W. Johnson, “Impact Strength of Materials,” Edward Arnold, London (1972).

    MATH  Google Scholar 

  2. M. E. Backman and W. Goldsmith, The Mechanics of Penetration of Projectiles into Targets, Int. J. Engng. Sci. 16:1 (1978).

    Article  Google Scholar 

  3. H. G. Hopkins, Dynamic Anelastic Deformation of Metals, App. Mech. Rev. 14:417 (1961).

    MathSciNet  Google Scholar 

  4. W. Goldsmith, Impact: the Collision of Solids, App. Mech. Rev. 16:855 (1963).

    Google Scholar 

  5. G. H. Jonas and J. A. Zukas, Mechanics of Penetration: Analysis and Experiment, Int. J. Engng. Sci. 16:879 (1978).

    Article  Google Scholar 

  6. E. Billington and A. Tate, “Physics of Deformation and Flow,” McGraw-Hill, New York (1981).

    MATH  Google Scholar 

  7. J. A. Zukas, Chapter 5, in “Impact Dynamics,” J. A. Zukas, T. Nicholas, H. F. Swift, L. B. Greszczuk and D. R. Curran, John Wiley, New York, (1982).

    Google Scholar 

  8. W. Johnson, in “The Mechanics of Solids,” 303, ed. H. G. Hopkins and M. J. Sewell, Pergamon, Oxford (1982).

    Google Scholar 

  9. A. W. Ruff and S. M. Wiederhorn, Erosion by Solid Particle Impact, Treatise on Mat. Sci. and Tech. 16:69 (1979).

    Google Scholar 

  10. G. W. Meetham, ed., “Development of Gas Turbine Materials,” Applied Science, London (1981).

    Google Scholar 

  11. National Materials Advisory Board, “Materials Response to Ultrahigh Loading Rates,” Rept. NMAB-356, PB80–153521, Washington D. C. (1980).

    Google Scholar 

  12. M. L. Wilkins, Mechanics of Penetration and Perforation, Int. J. Engng. Sci. 16:793 (1978).

    Article  Google Scholar 

  13. J. A. Zukas, Chapter 10, in “Impact Dynamics,” J. A. Zukas, T. Nicholas, H. F. Swift, L. B. Greszczuk and D. R. Curran, John Wiley, New York, (1982).

    Google Scholar 

  14. D. Tabor, “The Hardness of Metals,” Clarendon Press, Oxford (1951).

    Google Scholar 

  15. R. M. Davies, The Determination of Static and Dynamic Yield Stress using a Steel Ball, Proc. Roy. Soc. Lond. A197:416 (1949).

    ADS  Google Scholar 

  16. K. L. Johnson, Reversed Plastic Flow during the Unloading of a Spherical Indenter, Nature 199:1282 (1963).

    Article  ADS  Google Scholar 

  17. S. C. Hunter, Energy absorbed by Elastic Waves during Impact, J. Mech. Phys. Solids 5:162 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. I. M. Hutchings, Energy absorbed by Elastic Waves during Plastic Impact, J. Phys. P.: Appl. Phys. 12:1819 (1979).

    Article  ADS  Google Scholar 

  19. C. D. Davis and S. C. Hunter, Assessment of the Strain-Rate Sensitivity of Metals by Indentation with Conical Indenters, J. Mech. Phys. Solids 8:235 (1960).

    Article  ADS  MATH  Google Scholar 

  20. K. L. Johnson, in “Engineering Plasticity” ed. J. Heyman and F. A. Leckie, Cambridge Univ. Press, Cambridge (1966).

    Google Scholar 

  21. P. L. Makin and I. M. Hutchings, University of Cambridge, unpublished work (1982).

    Google Scholar 

  22. D. Tabor, Mohs’ Hardness Scale - A Physical Interpretation, Proc. Phys. Soc. B67:249 (1954).

    ADS  Google Scholar 

  23. A. Kelly, “Strong Solids,” Oxford Univ. Press, Oxford (1966).

    Google Scholar 

  24. I. M. Hutchings, Some Comments on the Theoretical Treatment of Erosive Particle Impacts, Proc. 5th Int. Conf. on Erosion by Liquid and Solid Impact, Cavendish Laboratory, Cambridge (1979).

    Google Scholar 

  25. A. G. Evans, M. E. Gulden and M. Rosenblatt, Impact Damage in Brittle Materials in the Elastic-plastic response regime, Proc. Roy. Soc. Lond. A361:343 (1978).

    ADS  Google Scholar 

  26. I. M. Hutchings, The Erosion of Ductile Metals by Solid Particles, Ph.D. dissertation, University of Cambridge (1974).

    Google Scholar 

  27. S. P. Timothy and I. M. Hutchings, Microstructural Features associated with Ballistic Impact in Ti6Al4V, Proc. 7th Int. Conf. on High Energy Rate Fabrication, 19, ed. T. Z. Blazynski, University of Leeds (1981).

    Google Scholar 

  28. W. Goldsmith and P. T. Lyman, The Penetration of Hard Steel Spheres into Plane Metal Surfaces, Trans. ASME E:Jnl of Appl. Mech. 27:717 (1960).

    Article  Google Scholar 

  29. I. M. Hutchings, Strain Rate Effects in Microparticle Impact, J. Phys. P.: Appl.Phys. 10:L179 (1977).

    Article  ADS  Google Scholar 

  30. K. L. Johnson, The Correlation of Indentation Experiments, J. Mech. Phys. Solids 18:115 (1970).

    Article  ADS  Google Scholar 

  31. P. S. Follansbee, G. B. Sinclair and J. C. Williams, Modelling of Low Velocity, Particulate Erosion in Ductile Materials, in “Wear of Materials 1981, ” 577, A.S.M.E., New York (1981).

    Google Scholar 

  32. G. B. Sinclair, Private Communication to E. Yoffe (1981).

    Google Scholar 

  33. M. M. Chaudhri, J. K. Wells and A. Stephens, Dynamic Hardness, Deformation and Fracture of Simple Ionic Crystals at Very High Rates of Strain, Phil. Mag. 43A:643 (1981).

    ADS  Google Scholar 

  34. N. L. Goodier, On the Mechanics of Indentation and Cratering in Solid Targets of Strain-Hardening Metal by Impact of Hard and Soft Spheres, Poulter Res. Labs. Tech. Rept. 002–64, Stanford Research Inst. Menlo Park (1964).

    Google Scholar 

  35. M. Mamoun, Analytical Models for the Erosive-Corrosive Wear Process, Appendix 1 to 2nd Quarterly Rept., Jan.- Mar. 1975, ANL-75-XX-2, Argonne Natl. Lab., and Appendix to 3rd Quarterly Rept., Apr. - June 1975, Argonne Natl. Lab.

    Google Scholar 

  36. A. R. E. Singer and R. W. Evans, New Technique for Rapid Measurement of High-Temperature Flow Stress, Met. Tech. 7:142 (1980), see also: W. Johnson and S. K. Ghosh, Met. Tech. 8:38 (1981).

    Google Scholar 

  37. W. Johnson, A. K. Sengupta and S. K. Ghosh, High Velocity Oblique Impact and Ricochet mainly of Long Rod Projectiles: an overview, Int. J. Mech. Sci. 24:425 (1982).

    Article  Google Scholar 

  38. I. M. Hutchings, N. H. Macmillan and D. G. Rickerby, Further Studies of the oblique Impact of a Hard Sphere against a Ductile Solid, Int. J. Mech. Sci. 23:639 (1981).

    Article  Google Scholar 

  39. J. M. Lifshitz and H. Kolsky, Some Experiments on Anelastic Rebound, J. Mech. Phys. Solids 12:35 (1964).

    Article  ADS  Google Scholar 

  40. see ref. 15.

    Google Scholar 

  41. C. Yew and W. Goldsmith, Stress Distributions in Soft Metals due to Static and Dynamic Loading by a Steel Sphere, Trans. ASME E.: J. Appl. Mech. 31:635 (1964).

    Article  Google Scholar 

  42. see ref. 28.

    Google Scholar 

  43. F. P. Bowden and D. Tabor, “Friction and Lubrication of Solids,” Vol. II, 438, Oxford Univ. Press, Oxford (1964).

    Google Scholar 

  44. D. G. Rickerby and N. H. Macmillan, Erosion of Aluminium by Solid Particle Impingement at Normal Incidence, Wear 60:369 (1980).

    Article  Google Scholar 

  45. G. Sundararajan and P. G. Shewmon, The Use of Dynamic Impact Experiments in the Determination of the Strain Rate Sensitivity of Metals and Alloys, to be published (1982).

    Google Scholar 

  46. C. H. Mok and J. Duffy, The Dynamic Stress-Strain Relation of Metals as determined from Impact Tests with a Hard Ball, Int. J. Mech. Sci. 7:355 (1965).

    Article  Google Scholar 

  47. A. G. Atkins and D. Tabor, Plastic Indentation in Metals with Cones, J. Mech. Phys. Solids 13:149 (1965).

    Article  ADS  Google Scholar 

  48. N. A. Stilwell and D. Tabor, Elastic Recovery of Conical Indentations, Proc. Phys. Soc. 78:169 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  49. F. U. Mahtab, W. Johnson and R. A. C. Slater, Dynamic Indentation of Copper, an Aluminium Alloy and Mild Steel with Conical Projectiles and Dynamic Tip Flattening of Conical Projectiles at Ambient Temperature, Int. J. Mech. Sci. 7:685 (1965).

    Article  Google Scholar 

  50. W. Goldsmith and C. Yew, Penetration of Conical Indenters into Plane Metal Surfaces, Proc. 4th U. S. Nat. Cong, of Appl. Mechanics 177, A. S. M. E. (1962).

    Google Scholar 

  51. F. U. Mahtab, W. Johnson and R. A. C. Slater, Dynamic Indentation of Copper and an Aluminium Alloy with a Conical Projectile at Elevated Temperatures, Proc. Instn. Mech. Engrs. 180:285 (1965–66).

    Google Scholar 

  52. G. I. Taylor, The Use of Flat-Ended Projectiles for Determining Dynamic Yield Stress I.: Theoretical Consideration, Proc. Roy. Soc. A194:289 (1948).

    ADS  Google Scholar 

  53. H. Kolsky, “Stress Waves in Solids, ” Clarendon Press, Oxford (1953), repr. 1963, Dover Publications, New York.

    MATH  Google Scholar 

  54. J. B. Hawkyard, A Theory for the Mushrooming of Flat-ended Projectiles impinging on a Flat Rigid Anvil, using Energy Considerations, Int. J. Mech. Sci. 11:313 (1969).

    Article  Google Scholar 

  55. D. J. Carley, unpublished rept., A. W. R. E., Aldermaston, Berks., England (1978).

    Google Scholar 

  56. M. L. Wilkins and M. W. Guinan, Impact of Cylinders on a Rigid Boundary, J. Appl. Phys. 44:1200 (1973).

    Article  ADS  Google Scholar 

  57. J. B. Hawkyard, D. Eaton and W. Johnson, Mean Dynamic Yield Strength of Copper and Low Carbon Steel at Elevated Temperatures from Measurements of the Mushrooming of Flat-ended Projectiles, Int. J. Mech. Sci., 10:929 (1968).

    Article  Google Scholar 

  58. H. G. Hopkins, in “Engineering Plasticity, ” ed. J. Heyman and F. A. Leckie, 277, Cambridge Univ. Press, Cambridge (1966).

    Google Scholar 

  59. E. H. Lee and S. J. Tupper, Analysis of Plastic Deformation in a Steel Cylinder Striking a Rigid Target, J. Appl. Mech. 21:63 (1954).

    Google Scholar 

  60. T. C. T. Ting, Impact of a Non-linear Viscoplastic Rod on a Rigid Wall, Trans. ASME E.: J. Appl. Mech. 33:505 (1966).

    Article  Google Scholar 

  61. D. Raftopoulos and N. Davids, Elastoplastic Impact on Rigid Targets, AIAA Journal 5:2254 (1967).

    Article  ADS  Google Scholar 

  62. I. M. Hutchings, Estimation of Yield Stress in Polymers at High Strain-Rates using G. I. Taylor’s Impact Technique, J. Mech. Phys. Solids 26:289 (1979).

    Article  ADS  Google Scholar 

  63. I. M. Hutchings and T. J. O’Brien, Normal Impact of Metal Projectiles against a Rigid Target at Low Velocities, Int. J. Mech. Sci. 23:255 (1981).

    Article  Google Scholar 

  64. S. N. Kukureka and I. M. Hutchings, Measurement of the Mechanical Properties of Polymers at High Strain-Rates by Taylor Impact, Proc. 7th Int. Conf. on High Energy Rate Fabrication, 29, ed. T. Z. Blazynski, University of Leeds (1981).

    Google Scholar 

  65. D. Raftopoulos, Longitudinal Impact of Two Mutually Plastically- deformable Missiles, Int. J. Solids and Structures 5:399 (1969).

    Article  Google Scholar 

  66. M. S. J. Hashmi and P. J. Thompson, A Numerical Method of Analysis for the Mushrooming of Flat-ended Projectiles Impinging on a Flat Rigid Anvil, Int. J. Mech. Sci. 19:273 (1977).

    Article  Google Scholar 

  67. R. L. Woodward and J. P. Lambert, A Discussion of the Calculation of Forces in the One-dimensional Finite Difference Model of Hashmi and Thompson, Int. J. Mech. Sci. 23:497 (1981).

    Article  Google Scholar 

  68. R. F. Recht, Taylor Ballistic Impact Modelling applied to Deformation and Mass Loss Determinations, Int. J. Engng. Sci. 16:809 (1978).

    Article  Google Scholar 

  69. R. L. Woodward, Penetration of Semi-infinite Metal Targets by Deforming Projectiles, Int. J. Mech. Sci. 24:73 (1982).

    Article  Google Scholar 

  70. A. C. Whiffin, The use of Flat-ended Projectiles for determining Dynamic Yield Stress II: Tests on various Metallic Materials, Proc. Roy. Soc. A194:300 (1948).

    ADS  Google Scholar 

  71. B. Balendra and F. W. Travis, An Examination of the Double- frustum Phenomenon in the Mushrooming of Cylindrical Projectiles upon High-speed Impact with a Rigid Anvil, Int. J. Mech. Sci. 13:495 (1971).

    Article  Google Scholar 

  72. M. Azrin, A. A. Anctil and E. B. Kula, Dynamic Mechanical Properties of Intercritically Rolled High Hardness Steel, Mat. Sci. and Engng. 53:285 (1982).

    Article  Google Scholar 

  73. P. Gordon, R. Karpp, S. C. banday and M. Schwartz, Influence of Dynamic Yield Point in Multimaterial Impact, J. Appl.Phys. 48:172 (1977).

    Article  ADS  Google Scholar 

  74. W. H. Gust, High Impact Deformation of Metal Cylinders at Elevated Temperatures, J. Appl. Phys. 53:3566 (1982).

    Article  ADS  Google Scholar 

  75. W. E. Carrington and M. L. V. Gayler, The Use of Flat-ended Projectiles for determining Dynamic Yield Stress III: Changes in Microstructure caused by Deformation under Impact at High Striking Velocities, Proc. Roy. Soc. A194:323 (1948).

    ADS  Google Scholar 

  76. G. J. Irwin, Metallographic Interpretation of Impacted Ogive Penetrators, Rept. DREV-R-652/72, N73–18538, Defence Research Establishment, Valcartier, Canada (1972).

    Google Scholar 

  77. L. E. Samuels and T. O. Mulhearn, An Experimental Investigation of the Deformed Zone Associated with Indentation Hardness Impressions, J. Mech. Phys. Solids, 5:125 (1957).

    Article  ADS  Google Scholar 

  78. R. L. Woodward, Strain Fields Associated with the Indentation of Metals, J. Aust. Inst. Metals 19:128 (1974).

    Google Scholar 

  79. S. T. S. Al-Hassani, Mechanical Aspects of Residual Stress Development in Shot Peening, in “First International Conference on Shot Peening, ” 583, ed. A. Niku-Lari, Pergamon, Oxford (1982).

    Google Scholar 

  80. G. Sundararajan, An Analysis of the Localization of Deformation and Weight Loss during Single Particle Normal Impact, to be published (1982).

    Google Scholar 

  81. T. Quadir and P. Shewmon, Solid Particle Erosion Mechanisms in Copper and Two Copper Alloys, Met. Trans. 12A:1163 (1981).

    Google Scholar 

  82. D. R. Andrews and J. E. Field, The Erosion of Metals by the Normal Impingement of Hard Solid Spheres, J. Phys. P.: Appl Phys. 15:571 (1982).

    Article  ADS  Google Scholar 

  83. J. V. Craig and T. A. C. Stock, Microstructural Damage Adjacent to Bullet Holes in 70–30 Brass, J. Aust. Inst. Metals 15:1 (1970).

    Google Scholar 

  84. R. Hill, “Plasticity”, Clarendon Press, Oxford (1950).

    Google Scholar 

  85. R. E. Winter, Adiabatic Shear of Titanium and Polymethylmethacrylate, Phil. Mag. 33:765 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  86. S. P. Timothy, Ph.D. Dissertation, University of Cambridge (1982).

    Google Scholar 

  87. T. A. C. Stock and K. R. L. Thompson, Penetration of Aluminium Alloys by Projectiles, Met. Trans. 1:219 (1970).

    Google Scholar 

  88. M. E. DeMorton and R. L. Woodward, The Effect of Friction on the Structure of Surfaces produced during Ballistic Tests, Wear 47:195 (1978).

    Article  Google Scholar 

  89. R. S. Culver, in “Metallurgical Effects at High Strain-Rates,” 519, ed. R. W. Rohde et al., Plenum, New York (1973).

    Google Scholar 

  90. M. R. Staker, The Relation between Adiabatic Shear Instability Strain and Material Properties, Acta Met. 29:683 (1981).

    Article  Google Scholar 

  91. T. Christman and P. G. Shewmon, Erosion of a Strong Aluminium Alloy, Wear 52:57 (1979).

    Article  Google Scholar 

  92. T. Christman and P. G. Shewmon, Adiabatic Shear Localization and Erosion of Strong Aluminium Alloys, Wear 54:145.

    Google Scholar 

  93. I. M. Hutchings, R. E. Winter and J. E. Field, Solid Particle Erosion of Metals: the Removal of Surface Material by Spherical Projectiles, Proc. Roy. Soc. A 348:379 (1976).

    ADS  Google Scholar 

  94. R. E. Winter and I. M. Hutchings, The Role of Adiabatic Shear in Solid Particle Erosion, Wear 34:141 (1975).

    Article  Google Scholar 

  95. I. M. Hutchings and R. E. Winter, The Erosion of Ductile Metals by Spherical Particles, J. Phys. P.: Appl. Phys. 8:8 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Hutchings, I.M. (1983). The Behaviour of Metals Under Ballistic Impact at Sub-Ordnance Velocities. In: Mescall, J., Weiss, V. (eds) Material Behavior Under High Stress and Ultrahigh Loading Rates. Sagamore Army Materials Research Conference Proceedings, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3787-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3787-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3789-8

  • Online ISBN: 978-1-4613-3787-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics