Skip to main content

Physics of Fracture

  • Chapter
Atomistics of Fracture

Abstract

In this paper my task is to set a perspective for the physical problems posed by fracture. Fracture is not a subject often mentioned among solid state physicists, but the field of fracture research is extraordinary in the range of disciplines it spans and draws from, and it will be my purpose to demonstrate that there is an important physical dimension to this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For general texts on fracture see: J.F. Knott, Fundamentals of Fracture Mechanics, Butterworths, 1973. B.R. Lawn and T.R. Wilshaw, Fracture of Brittle Solids, Cambridge Univ. Press, 1975. Two excellent monographs of a more advanced nature are: B.A. Bilby and J.D. Eshelby, Fracture, Vol. 1, p99, Ed. by H. Liebowitz (1968), Academic Press. J.R. Rice, Ibid, Vol. 2, pl91.

    Google Scholar 

  2. J. D. Eshelby, Solid State Phys., 3, Ed- by F. Seitz and D. Turnbull, Academic Press, N.Y., 1956.

    Google Scholar 

  3. E.R. Fuller and R. Thomson, Fracture Mechanics of Ceramics, Vol. 4, p507, Ed. by R. Bradt et al, Plenum, N.Y., 1978.

    Google Scholar 

  4. R. Thomson, J. Matls. Sci., 15, 1027 (1980).

    Article  ADS  Google Scholar 

  5. G. Barenblatt, Adv. Appl. Mech., 2, 55 (1962).

    Article  MathSciNet  Google Scholar 

  6. J. Goodier and M. Kanninen, Tech. Rept. 165, Div. of Eng. Mech., Stanford Univ. (1966).

    Google Scholar 

  7. P. Gehlen and M. Kanninen, Inelastic Behavior of Solids, M. Kanninen et al ( Eds. ), Plenum (1972).

    Google Scholar 

  8. M. Kanninen and P. Gehlen, Interatomic Potentials and Simulation of Lattice Defects, Ed. P. Gehlen et al, Plenum (1972).

    Google Scholar 

  9. M. Kanninen and P. Gehlen, Int. J. Fract. Mech., 471 (1971).

    Google Scholar 

  10. P. Gehlen, G. Hahn, and M. Kanninen, Scripta Met., 6, 1087 ( 1972.

    Article  Google Scholar 

  11. A. Markworth, M. Kanninen, and P. Gehlen, Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, NACE (1974).

    Google Scholar 

  12. R.A. Johnson, Phys. Rev. 145, 423 (1966).

    Article  ADS  Google Scholar 

  13. J. Sinclair and B. Lawn, Proc. Roy. Soc. A 329, 83 (1972).

    Article  ADS  Google Scholar 

  14. J. Sinclair, Phil. Mag. 31, 647 (1975).

    Article  ADS  Google Scholar 

  15. W. Sanders. Eng. Fract. Mech.,4, 145 (1972).

    Article  Google Scholar 

  16. J. Wiener and M. Pear, J. Appl. Phys., 46, 2398 (1975).

    Article  ADS  Google Scholar 

  17. W. Ashurst and W. Hoover, Phys. Rev., B, 14, 1465 (1976).

    Article  ADS  Google Scholar 

  18. A. Paskin, A. Gohar, and G.J. Dienes, Phys. Rev. Let., 44, 940 (1980)

    Article  ADS  Google Scholar 

  19. A. Paskin, D.K. Som, and G.J. Dienes, J. Phys. C., 14, L171 (1981).

    Article  ADS  Google Scholar 

  20. C. Hsieh and R. Thomson, J. Appl. Phys. 44, 2051 (1973).

    Article  ADS  Google Scholar 

  21. D. Esterling, J. Appl. Phys., 47, 486 (1976).

    Article  ADS  Google Scholar 

  22. R. Bullough and J. Hardy, Phil. Mag., 17, 833 (1968).

    Article  ADS  Google Scholar 

  23. J. Hirth and J. Lothe, Theory of Dislocations, p. 484, McGraw-Hill, N.Y. (1968).

    Google Scholar 

  24. S. Wiederhorn, J. Amer. Cer. Soc., 50, 407 (1967).

    Article  Google Scholar 

  25. S. Wiederhorn, E. Fuller, and R. Thomson, Metal. Sci., 14, 450 (1980)

    Google Scholar 

  26. A. Kelly, W. Tyson, and A. Cottrell, Phil. Mag., 15, 567 (1967).

    Article  ADS  Google Scholar 

  27. J. Rice and R. Thomson, Phil. Mag., 29, 73 (1974).

    Article  ADS  Google Scholar 

  28. W. Tyson, Fracture 1977, 2, 159, 1CF4 (1977).

    Google Scholar 

  29. I. Howard, Proc. Int. Conf. on Mechanical Properties of Materials (ICM3), Cambridge, England, 2, 462 (1979).

    Google Scholar 

  30. M. Jokl, V. Vitek, and C. McMahon, to be published.

    Google Scholar 

  31. J. Gilman, C. Knudsen, and W. Walsh, J. Appl. Phys., 29, 747 (1958).

    Article  ADS  Google Scholar 

  32. B. Lawn, B. Hockey, and S. Wiederhorn, J. Matls. Sci., 15, 207 ( 1980

    Article  Google Scholar 

  33. I. Lin and J. Hirth, to be published.

    Google Scholar 

  34. R. Wei, K. Klein, G. Simmons, and Y Chou, Symp. on Hydrogen Embrittlement and Stress Corrosion Cracking, June 2–3, 1980, Case Western Reserve Univ., Proceedings to be published.

    Google Scholar 

  35. J. Sinclair, P. Gehlen, V. Hoagland, and J. Hirth, J. Appl. Phys., 49, 3890 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Thomson, R. (1983). Physics of Fracture. In: Latanision, R.M., Pickens, J.R. (eds) Atomistics of Fracture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3500-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3500-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3502-3

  • Online ISBN: 978-1-4613-3500-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics