Skip to main content

Theory of Exchange-Correlation Effects in the Electronic Single- and Two-Particle Excitations of Covalent Crystals

  • Chapter
Electron Correlations in Solids, Molecules, and Atoms

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 81))

Abstract

We summarize recent investigations on the importance of many-body effects for the single-particle excitation spectrum, the optical response and the impurity screening in covalent crystals which we have performed. Key tools in these investigations are the Green’s function formalism and a local one-electron basis which facilitates an explicit solution of the coupled Dyson equations for the one- and two-particle Green’s functions. We discuss a first-principle calculation of the single-particle excitations in diamond which rests on an energy-dependent nonlocal self-energy operator obtained by replacing the Coulomb potential in the exchange operator by a dynamically screened interaction. To be consistent with a variety of experiments on two-particle excitations, i.e. the optical absorption (studied in detail for diamond and silicon), the dielectric matrix of the medium was taken within the time-dependent screened Hartree-Fock approximation (TDSHF), thereby including both local-field and electron-hole (excitonic) effects. Previous calculations along similar lines have been restricted either to a RPA frequency-independent dielectric function or to a plasmon-pole approximation. For the first time the role of a realistic frequency and wave-vector dependent dielectric matrix was investigated and the relative importance of the electron-hole excitations and of the plasma resonance across the range of the valence and conduction bands was examined. Electron-hole mediated dynamical correlation effects entirely determine the quasi-particle renormalization near the energy gap. On the other hand, the plasma-resonance does not contribute appreciably in the energy range about the band-gap while it contributes significantly to the valence band-width. Our values for the band-gap and the valence bandwidth are in good agreement with reflectivity and photoemission experiments (XPS). Implications for the local density and the energy-independent correlation approximations are discussed. In addition, our method, by utilizing an energy-dependent self-energy, has also enabled us to calculate quasi-particle damping times (specifically, intra-band Auger decay rates) that are consistent with photoemission spectra.

Finally, our detailed studies of both substitutional and interstitial impurity screening in diamond and silicon demonstrate again the necessity of including local-field and excitonic manybody effects. From these effects significant corrections to binding energies of impurities are to be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Pines, in Elementary Excitations in Solids ( Benjamin, New York, 1963 ).

    Google Scholar 

  2. A. L. Fetter and J. D. Walecka, in Quantum Theory of Many-Particle Systems ( McGraw-Hill, New York, 1971 ).

    Google Scholar 

  3. W. Hanke and L. J. Sham, Phys. Rev. Lett. 33, 582 (1974); Phys. Rev. B12, 4501 (1975).

    Article  ADS  Google Scholar 

  4. W. Hanke and L. J. Sham, Phys. Rev. Lett. 43, 387 (1979); Phys. Rev. B21, 4656 (1980).

    Article  ADS  Google Scholar 

  5. W. Hanke, in Festkörperprobleme, edited by J. Treusch, (Vieweg, Wiesbaden, 1979), V. 19, p.43; Adv. Phys. 27, 287 (1978).

    Google Scholar 

  6. M. L. Cohen and V. Heine, in Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic, New York (1970), V.24, p.1.

    Google Scholar 

  7. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  8. L. Hedin and B. I. Lundqvist, J. Phys. C4, 2064 (1971); O. Gunnarson and B. I. Lundqvist, Phys. Rev. B13, 4274 (1976); O. Gunnarson, M. Jonson and B.I. Lundqvist, Phys. Rev. B20, 3136 (1979).

    ADS  Google Scholar 

  9. L. Hedin and S. Lundqvist, in Solid State Physics, edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic, New York, 1969), v.23, p.1

    Google Scholar 

  10. L. J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).

    Article  ADS  Google Scholar 

  11. B. I. Lundqvist, Phys. Konden. Materie 6, 193 (1967).

    Article  ADS  Google Scholar 

  12. M. Rasolt and S. H. Vosko, Phys. Rev. B10, 4195 (1974).

    Article  ADS  Google Scholar 

  13. A. B. Kunz, Phys. Rev. B6, 606 (1972).

    Article  ADS  Google Scholar 

  14. J. Hermanson, Phys. Rev. B6, 2427 (1972).

    Article  ADS  Google Scholar 

  15. A. Mauger and M. Lannoo, Phys. Rev. B15, 2324 (1977).

    ADS  Google Scholar 

  16. A. Zunger and A. J. Freeman, Phys. Rev. B15, 5049 (1977).

    Article  ADS  Google Scholar 

  17. R. A. Roberts and W. C. Walker, Phys. Rev. 161, 730 (1967).

    Article  ADS  Google Scholar 

  18. F. R. McFeely, S. P. Kowalczyk, L. Ley, R. G. Cavell, R. A. Pollak and D. A. Shirley, Phys. Rev. B9, 5268 (1974).

    Article  ADS  Google Scholar 

  19. D. R. Hamann, Phys. Rev. Lett. 42, 662 (1979).

    Article  ADS  Google Scholar 

  20. A. Daunois and D. E. Aspnes, Phys. Rev. B18, 1824 (1978).

    Article  ADS  Google Scholar 

  21. L. Ley, S. Kowalczyk, R. Pollak, D. A. Shirley, Phys. Rev. Lett 29, 1088 (1972).

    Article  ADS  Google Scholar 

  22. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  ADS  MATH  Google Scholar 

  23. A. Manger and M. Lannoo, Phys. Rev. B15, 2324 (1977).

    ADS  Google Scholar 

  24. F. Bassani, G. Iadonisi and B. Preziosi, Rep. Progr. Phys. 37, 1099 (1974).

    Article  ADS  Google Scholar 

  25. S.T. Pantelides, Rev. Mod. Phys. 50, 797 (1978).

    Article  ADS  Google Scholar 

  26. S.T. Pantelides, Rev. Mod. Phys. 50, 797 (1978).

    Article  ADS  Google Scholar 

  27. P. Nozières, in Theory of Interacting Fermi Systems ( Benjamin, New York, 1964 ).

    MATH  Google Scholar 

  28. H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. H. Fröhlich, in Theory of Dielectrics (Oxford Univ. Press, Oxford, 1949 )

    Google Scholar 

  30. V. Ambegaokar and W. Kohn, Phys. Rev. 117, 423 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. L. J. Sham and T. M. Rice, Phys. Rev. 144, 708 (1966).

    Article  ADS  Google Scholar 

  32. G. G. Hall, Philos. Mag. 43, 338 (1952).

    MATH  Google Scholar 

  33. L. Pauling, J. Am. Chem. Soc. 53, 1367 (1931).

    Article  Google Scholar 

  34. J. L. Whitten, J. Chem. Phys. 44, 359 (1966).

    Article  ADS  Google Scholar 

  35. R. N. Euwema, D. L. Wilhite and G. J. Surratt, Phys. Rev. B7, 818 (1973).

    ADS  Google Scholar 

  36. I. Shavitt, in Methods in Computational Physics, edited by B. Adler, S. Feshbach and M. Rotenberg (Academic, New York, 1963) p.1.

    Google Scholar 

  37. S. L. Adler, Phys. Rev. 126, 413 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. N. Wiser, Phys. Rev. 129, 62 (1963).

    Article  ADS  MATH  Google Scholar 

  39. D. L. Johnson, Phys. Rev. B9, 4475 (1974); Phys. Rev. B12, 3428 (1975).

    Article  ADS  Google Scholar 

  40. L. J. Sham, in Dynamical Properties of Solids, edited by G. K. Horton and A. A. Maradudin (North-Holland, Amsterdam, 1974) vol.1, chap. 5.

    Google Scholar 

  41. G. S. Painter, D. E. Ellis and A. R. Lubinsky, Phys. Rev. B4, 3610 (1971).

    Article  ADS  Google Scholar 

  42. J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

    Article  ADS  MATH  Google Scholar 

  43. N.V. Cohan, D. Pugh and R.H. Tredgold, Proc. Phys. Soc. London 82,-65 (1963).

    Article  ADS  MATH  Google Scholar 

  44. R. C. Chaney, C. C. Lin, E. E. Lafon, Phys. Rev. B3, 459 (1971).

    Article  ADS  Google Scholar 

  45. P. W. Anderson, Phys. Rev. Lett. 21, 13 (1968).

    Article  ADS  Google Scholar 

  46. G. Srinivasan, Phys. Rev. 178, 1244 (1969).

    Article  ADS  Google Scholar 

  47. D. R. Penn, Phys. Rev. 128, 2093 (1962).

    Article  ADS  MATH  Google Scholar 

  48. M. Kastner, Phys. Rev. B7, 5237 (1973).

    Article  ADS  Google Scholar 

  49. O. Jepsen and O. K. Andersen, Solid State Commun. 9, 1763 (1971)

    Article  ADS  Google Scholar 

  50. G. Lehmann and M. Tant, Phys. Stat. Sol. (b) 54, 469 (1972).

    Article  ADS  Google Scholar 

  51. J. A. Van Vechten and R. M. Martin, Phys. Rev. Lett. 28, 446 (1972).

    Article  ADS  Google Scholar 

  52. R. F. Egerton and M. J. Whelan, Philos. Mag. 30, 739 (1974).

    Article  ADS  Google Scholar 

  53. A. Bansil, Solid State Commun. 16, 884 (1975).

    Article  ADS  Google Scholar 

  54. B. Ortenburger and W. E. Rudge, IBM research reports (unpublished).

    Google Scholar 

  55. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B10, 5095 (1974).

    Article  ADS  Google Scholar 

  56. D. J. Chadi, Phys. Rev. B16, 3572 (1977).

    Article  ADS  Google Scholar 

  57. E. O. Kane and A. B. Kane, Phys. Rev. B17, 2691 (1978).

    Article  ADS  Google Scholar 

  58. P. M. Morse and H. Feshbach, in Methods of Theoretical Physics ( McGraw-Hill, New York, 1953 )

    MATH  Google Scholar 

  59. S. G. Louie, J. R. Chelikowsky and M. L. Cohen, Phys. Rev. Lett. 34, 155 (1975).

    Article  ADS  Google Scholar 

  60. H. R. Philipp, J. Appl. Phys. 43, 2835 (1972).

    Article  ADS  Google Scholar 

  61. W. A. Harrison, in Electronic Structure and the Properties of Solids ( Freeman, San Francisco, 1980 ).

    Google Scholar 

  62. H. J. Hinz and H. Raether, Thin Solid Films, 58, 281 (1979).

    Article  ADS  Google Scholar 

  63. G. Strinati, H. J. Mattausch and W. Hanke, Phys. Rev. Lett. 45, 189 (1980); Phys. Rev. B (to be published).

    Article  Google Scholar 

  64. P. Hohenberg and W. Kohn, Phys. Rev. 136, B 846 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  65. V. M. Galitskii and A. B. Migdal, Sov. Phys. JEPT 7, 96 (1968).

    Google Scholar 

  66. J. C. Ward, Phys. Rev. 78, 182 (1950); Y. Takahashi, Nuovo Cimento 6, 371 (1957).

    Article  ADS  MATH  Google Scholar 

  67. T. M. Rice, Ann. Phys. (N.Y.) 31, 100 (1965).

    Article  ADS  Google Scholar 

  68. A. W. Overhauser, Phys. Rev. B3, 1888 (1971).

    Article  ADS  Google Scholar 

  69. Y. Toyozawa, Progr. Theor. Phys. 12, 421 (1954).

    Article  ADS  MATH  Google Scholar 

  70. S. T. Pantelides, D. J. Mickish and A. B. Kunz, Phys. Rev. B10, 2602 (1974).

    Article  ADS  Google Scholar 

  71. D. J. Mickish, A. B. Kunz and T. C. Collins, Phys. Rev. B9, 4461 (1974); A. B. Kunz, D. J. Mickish and T. C. Collins, Phys. Rev. Lett. 31, 756 (1973).

    Article  ADS  Google Scholar 

  72. W. Brinkman and B. Goodman, Phys. Rev. 149, 597 (1966).

    Article  ADS  Google Scholar 

  73. N. O. Lipari and W. B. Fowler, Phys. Rev. B2, 3354 (1970).

    Article  ADS  Google Scholar 

  74. N. E. Brener, Phys. Rev. B11, 929 (1975); Phys. Rev. B11, 1600 (1975).

    Article  ADS  Google Scholar 

  75. M. Bennett and J. C. Inkson, J. Phys. C10, 987 (1977); J. C. Inkson and M. Bennett, J. Phys. C11, 2017 (1978).

    ADS  Google Scholar 

  76. A. J. Layser, Phys. Rev. 129, 897 (1963).

    Article  ADS  Google Scholar 

  77. A. Baldereschi, Phys. Rev. B7, 5212 (1973).

    Article  ADS  Google Scholar 

  78. F. J. Himpsel, J. F. van der Veen and D. E. Eastman, Phys. Rev. B22, 1967 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  79. L. Ley, M. Cardona and R. A. Pollak, in Photoemission in Solids, edited by L. Ley and M. Cardona (Springer, Berlin, 1979) p.11.

    Google Scholar 

  80. M. Mehta and C. S. Fadley, Phys. Rev. Lett. 39, 1569 (1977).

    Article  ADS  Google Scholar 

  81. W. C. Walker and J. Osantowski, Phys. Rev. 134, A153 (1964); C. D. Clark, P. J. Dean and P. V. Harris, Proc. Roy. Soc. A277, 312 (1964); P. J. Dean, E. C. Lightowlers and D. R. Wight, Phys. Rev. 140, A352 (1965).

    Article  ADS  Google Scholar 

  82. J. A. Alonso and M. P. Iniguez, Solid State Commun. 33, 59 (1980).

    Article  ADS  Google Scholar 

  83. F. J. Himpsel, J. A. Knapp, J. A. Van Vechten and D. E. Eastman, Phys. Rev. B20, 624 (1979).

    Article  ADS  Google Scholar 

  84. S. T. Pantelides, Phys. Rev. B11, 2391 (1975).

    Article  ADS  Google Scholar 

  85. G. A. Baraff and M. Schlüter, Phys. Rev. Lett. 41, 892 (1978).

    Article  ADS  Google Scholar 

  86. J. Bernhole, N. O. Lipari and S. T. Pantelides, Phys. Rev. Lett. 41, 895 (1978).

    Article  ADS  Google Scholar 

  87. R. Resta, Pyys. Rev. B16, 2717 (1977).

    Article  ADS  Google Scholar 

  88. F. Cornoiti and R. Resta, Phys. Rev. B17, 3239 (1978).

    Article  ADS  Google Scholar 

  89. M. Lannoo and G. Alian, Solid State Commun. 33, 293 (1980).

    Article  ADS  Google Scholar 

  90. H. Nara, J. Phys. Soc. Japan, 20, 778 (1965).

    Article  Google Scholar 

  91. J. P. Walter and M. L. Cohen, Phys. Rev. B2, 1821 (1970).

    ADS  Google Scholar 

  92. R. Car and S. Selloni, Phys. Rev. Lett. 42, 1365 (1979).

    Article  ADS  Google Scholar 

  93. S. Go, H. Bilz and M. Cardona, Phys. Rev. Lett. 34, 580 (1975)

    Article  ADS  Google Scholar 

  94. J. C. Phillips, Phys. Rev. 166, 832 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Hanke, W., Mattausch, H.J., Strinati, G. (1983). Theory of Exchange-Correlation Effects in the Electronic Single- and Two-Particle Excitations of Covalent Crystals. In: Devreese, J.T., Brosens, F. (eds) Electron Correlations in Solids, Molecules, and Atoms. NATO Advanced Study Institutes Series, vol 81. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3497-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3497-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3499-6

  • Online ISBN: 978-1-4613-3497-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics