Skip to main content

Protection of Trichoderma Reesei Cellulase from Inactivation Due to Shaking

  • Chapter
Solution Behavior of Surfactants

Abstract

Cellulases can be added to the list of enzymes that are inactivated by shaking, agitation, or shearing. Of the cellulases, the most susceptible component is cellobiohydrolase (CBH). A survey of compounds that protect CBH against shaking reveals that some non-ionic surfactants are most potent, being active in the range of one molecule per molecule of enzyme. Under shaking conditions (50°, 350 rpm) where the CBH half-life is 1.5 hours, the presence of Zonyl·FSN increased the half-life to 180 hours. The addition of surfactant to enzyme already inactivated by shaking does not lead to recovery of activity. The presence of surfactant does not improve heat stability of the enzyme under unshaken conditions; nor does it affect the initial rate of hydrolysis. Long time (3 day) hydrolyses of crystalline cellulose under shaking conditions are markedly improved by the presence of surfactant, the improvement resulting from protection of the CBH against inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Asakura, K. Adachi and E. Schwartz, J. Biol. Chem., 253, 6423 (1977).

    Google Scholar 

  2. T. Asakura, P. Herridge, P. K. Ghory and K. Adachi, J. Biol. Chem., 252, 1829 (1977).

    PubMed  Google Scholar 

  3. S. N. Basu and P. M. Pal, Science, 178, 312 (1956).

    Google Scholar 

  4. F. H. Bissett, J. Chrmatog., 178, 515-(1979).

    Article  Google Scholar 

  5. S. E. Charm and B. L. Wong, Biotechn. Bioeng., 12, 1103-(1970).

    Article  Google Scholar 

  6. S. E. Charm and B. L. Wong, Science, 170, pp. 466-(1970).

    Google Scholar 

  7. S. E. Charm and B. L. Wong, Biotechn. & Bioeng., 12, 451-(1978).

    Article  Google Scholar 

  8. J. Feder, D. Kochavi, R. G. Anderson and B. S. Wilde, Biotechn Bioeng., 20, 1865 (1978).

    Article  Google Scholar 

  9. R. G. Kelsey and F. Shafizadeh, Biotechn. Bioeng., 22, 1025-(1979).

    Article  Google Scholar 

  10. F. Macritchie, Adv. Prtoein Chem., 32, 283-(1978).

    Article  Google Scholar 

  11. M. Mandels, R. Andreotti and C. Roche, Biotechn. Bioeng. Symp. 5, 21-(1976).

    Google Scholar 

  12. M. Mandels, S. Dorval and J. Medeiros, Proc. Second Ann. Symposium Fuels from Biomass, R.P.I., pp. 627–669, Ed. W. W. Schuster (1978).

    Google Scholar 

  13. B. J. Montenecourt and D. E. Eveleigh, Appl. Env. Microbiol., 34, 777-(1977).

    Google Scholar 

  14. T. Ohnishi and T. Asakura, Biochem. Biophys. Acta, 453, 93- (1976).

    PubMed  Google Scholar 

  15. E. T. Reese, Biotechn. Bioeng. Symp., 3, “Enzyme Engineering”, pp. 43–62, John Wiley and Sons, Inc., NYC (1972).

    Google Scholar 

  16. E. T. Reese and M. Mandels, Biotechn. Bioeng., 22, 323- (1980).

    Article  Google Scholar 

  17. E. T. Reese and D. Ryu, Enz. and Microbiol. Techn., 2: 239–40.

    Google Scholar 

  18. J. J. Sedmak and S. E. Grossberg, Texas Rept. an Biology and Medicine, 35, 198- (1977).

    Google Scholar 

  19. D. Sternberg, P. Vijayakumar and E. T. Reese, Can. J. Microbiol., 23, 139- (1977).

    Article  PubMed  Google Scholar 

  20. M. Tanaka, S. Takenawa, R. Matsuno and I. Kamikubo, J. Ferment Techn., 56, 108- (1978).

    Google Scholar 

  21. C. R. Thomas, A. W. Nienow and P. Dunnill, Biotechn. Bioeng., 21, 2263- (1979).

    Article  Google Scholar 

  22. C. R. Thomas and P. Dunhill, Biotechn. Bioeng., 21, 2279- (1979).

    Article  Google Scholar 

  23. M. Tirrell and S. Middleman, AIChE Symp. Ser. Diorheology, 74, 102- (1978).

    Google Scholar 

  24. M. Tirrell and S. Middleman, Biophys. J., 23, 121- (1978).

    Article  PubMed  Google Scholar 

  25. M. Tirrell, J. Bioeng., 2, 183- (1978).

    PubMed  Google Scholar 

  26. N. Toyama and K. Ogawa, in “Enz. Hydrolysis of Cellulose” Symp., (SITRA), Aulanko, Finland, Edit. M. Bailey, T. M. Enari, and M. Linko, pp. 375–387 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Reese, E.T. (1982). Protection of Trichoderma Reesei Cellulase from Inactivation Due to Shaking. In: Mittal, K.L., Fendler, E.J. (eds) Solution Behavior of Surfactants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3494-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3494-1_50

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3496-5

  • Online ISBN: 978-1-4613-3494-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics