Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 5))

Abstract

Semidefinite Programming is a rapidly emerging area of mathematical programming. It involves optimization over sets defined by semidefinite constraints. In this chapter, several facets of this problem are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh,Combinatorial Optimization with Interior Point Methods and Semi-Definite Matrices, Ph.D. Thesis, Computer Science Department, University of Minnesota, Minneapolis, Minnesota, 1991.

    Google Scholar 

  2. F. Alizadeh,Optimization Over Positive Semi-Definite Cone; Interior-Point Methods and Combinatorial Applications, In “Advances in Optimization and Parallel Computing”, P.M. Pardalos, editor, North-Holland, 1992.

    Google Scholar 

  3. F. Alizadeh, Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization,SIAM J. Opt., Vol. 5 (1995), pp. 13–51.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Alizadeh, J.A. Haeberly,and M. Overton, Primal-dual Interior Point Methods for Semidefinite Programming,Manuscript, 1994.

    Google Scholar 

  5. F. Alizadeh, J.-P. A. Haeberly,and M.L. Overton, Complementarity and Nondegeneracy in Semidefinite Programming, Submitted toMath. Programming, March 1995.

    Google Scholar 

  6. N. Alon,and N. Kahale, Approximating the Independence Number Via the0-functionManuscript, 1995.

    Google Scholar 

  7. K.M. Anstreicher,and M. Fampa, A Long-step Path Following Algorithm for Semidefinite Programming Problems, Working Paper, Department of Management Sciences, University of Iowa, Iowa City, USA, 1996.

    Google Scholar 

  8. G.P. Barker, The lattice of faces of a finite dimensional coneLinear Algebra and its Applications, Vol. 7 (1973), pp. 71–82.

    Article  MathSciNet  MATH  Google Scholar 

  9. G.P. Barker, and D. Carlson, Cones of Diagonally dominant matricesPacific J. of Math, Vol. 57 (1975), pp. 15–32.

    MathSciNet  MATH  Google Scholar 

  10. T. Becker, and V. Weispfenning (WITH H. Kredel)Grobner Bases:A Computational Approach to Commutative Algebra, Springer-Verlag, New York, 1993.

    Google Scholar 

  11. A. Ben-tal, and M.P. Bledsoe, A New Method for Optimal Truss Topology DesignSIAM J. Optim., Vol. 3 (1993), pp. 322–358.

    Article  MathSciNet  Google Scholar 

  12. L. Blum, M. Shub, S. Smale, On a Theory of Computation and Complexity over the Real Numbers: NP-Completeness, Recursive Functions and Universal Machines, Bull. (New Series) of the AMS, Vol. 21 (1989), pp 1–46.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Borwein, and H. Wolkowicz, Regularizing the Abstract Convex ProgramJ. Math. Anal. Appl., Vol. 83(1981).

    Google Scholar 

  14. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix Inequalities in System and Control Theory, Volume 15 ofStudies in Applied Mathematics, SIAM, Philadelphia, PA, 1994.

    Google Scholar 

  15. A. Brøndsted,An Introduction To Convex Polytopes, Springer-Verlag, New York, 1983.

    Book  Google Scholar 

  16. D. Cox, J. Little, and D. O’Shea,Ideals, Varieties, and Algorithms, Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

  17. V. Chvátal,Linear Programming, W.H. Freeman and Co., New York, 1983.

    Google Scholar 

  18. J. Elzinga, D.W. Hearn, and W. Randolph, Minimax Multifacility Location with Euclidean Distances,Transportation Science, Vol. 10, (1976), pp. 321–336.

    Article  MathSciNet  Google Scholar 

  19. L. Faybusovich, On a Matrix Generalization of Affine-scaling Vector Fields,SIAM J. Matrix Anal. Appl., Vol. 16 (1995), pp. 886–897.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Faybusovich, Semi-definite Programming: a Path-following Algorithm for a Linear-quadratic Functional, Technical Report, Dept. of Mathematics, University of Notre Dame, Notre Dame, IN, USA, 1995.

    Google Scholar 

  21. R. Fletcher, Semi-definite Matrix Constraints in Optimization,SI AM J. on Control and Optimization, Vol. 23 (1985), pp. 493–513.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Freund, Complexity of an Algorithm for Finding an Approximate Solution of a Semi-Definite Program, with no Regularity Condition, Working Paper, OR 302–94, ORC, MIT, 1994.

    Google Scholar 

  23. A. Frieze, and M. Jerrum, Improved Approximation Algorithms for MAX-k-CUT and MAX BISECTION, To appear inSIAM Journal of Discrete Mathematics, 1996.

    Google Scholar 

  24. T. Fujie, and M. Kojima, Semidefinite Programming Relaxation for Nonconvex Quadratic Programs, To appear in J. of Global Optimization, 1996.

    Google Scholar 

  25. M.R. Garey, and D.S. Johnson,Computers and Intractability:A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979.

    MATH  Google Scholar 

  26. M.X. Goemans, and D.P. Williamson, Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming,J. ACM, Vol. 42 (1995), pp. 1115–1145.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Goldfarb, K. Scheinberg Interior Point Trajectories in Semidefinite Programming, Working Paper, Dept. of IEOR, Columbia University, New York, NY, 1996.

    Google Scholar 

  28. R. Grone, C.R. Johnson, E.M. Sá, and H. Wolkowicz, Positive Definite Completions of Partial Semidefinite Matrices,Linear Algebra and its Applications, Vol. 58 (1984), pp. 109–124.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Grötschel, L. Lovász, and A. Schrijver, Polynomial Algorithms for Perfect Graphs,Annals of Discrete Mathematics 21, C. Berge and V. Chvatal, eds., North Holland, 1984.

    Google Scholar 

  30. M. Grötschel, L. Lovász, A. SchrijverGeometric Algorithms and Combinatorial Optimization, Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  31. O. Güler, Hyperbolic Polynomial and Interior Point Methods for Convex Programming, Technical report TR95–40, Dept. of Math, and Stat., University of Maryland, Baltimore County, Baltimore, MD 21228.

    Google Scholar 

  32. J.-P. A. Haeberly, and M.L. Overton, Optimizing Eigenvalues of Symmetric Definite Pencils,Proceedings of American Control Conference, Baltimore, July 1994.

    Google Scholar 

  33. J.-P. A. Haeberly, and M.L. Overton, A Hybrid Algorithm for Optimizing Eigenvalues of Symmetric Definite Pencils,SIAM J. Matr. Anal. Appl., Vol. 15 (1994), pp. 1141–1156.

    Article  MathSciNet  MATH  Google Scholar 

  34. B. He, E. De Klerk, C. Roos, and T. Terlaky, Method of Approximate Centers for Semi-definite Programming, Technical Report 96-27, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1996.

    Google Scholar 

  35. C. Helmberg, F. Rendl, R. Vanderbei and H. Wolkowicz, An Interior- point Method for Semidefinite Programming,To appear in SIAM J. Optim., 1996.

    Google Scholar 

  36. R.B. Holmes,Geometric Functional Analysis and its Applications, Springer- Verlag, New York, 1975.

    MATH  Google Scholar 

  37. R. Horn and C.R. Johnson,Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  38. B. Jansen, C. Roos, T. Terlaky and J.-PH. Vial, Primal-dual Algorithms for Linear Programming Based on the Logarithmic Barrier Method,Journal of Optimization Theory and Applications, Vol. 83 (1994), pp. 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Jansen, C. Roos and T. Terlaky, A Family of Polynomial Affine Scaling Algorithms for Positive Semi-definite Linear Complementarity Problems, Technical Report 93–112, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1993. ( To appear in SIAM Journal on Optimization).

    Google Scholar 

  40. F. Jarre, An Interior Point Method for Minimizing the Maximum Eigenvalue of a Linear Combination of Matrices, Report SOL 91–8, Dept. of OR, Stanford University, Stanford, CA, 1991.

    Google Scholar 

  41. J. Jiang, A Long Step Primal Dual Path Following Method for Semidefinite Programming, Technical Report 96009, Department of Applied Mathematics, Tsinghua University, Beijing 100084, China, 1996.

    Google Scholar 

  42. D.S. Johnson, C.H. Papadimitriou and M. Yannakakis, How Easy is Local Search?Journal of Comp. Sys. Sci, Vol. 37 (1988), pp. 79–100.

    Article  MathSciNet  MATH  Google Scholar 

  43. D. Karger, R. Motwani and Madhu Sudan, Improved Graph Coloring by Semidefinite Programming, In34th Symposium on Foundations of Computer Science, IEEE Computer Society Press, 1994.

    Google Scholar 

  44. J. Kleinberg and M. Goemans, The Lovász Theta Function and a Semidefinite Relaxation of Vertex Cover,Manuscript, 1996.

    Google Scholar 

  45. E. De Klerk, C. Roos and T. Terlaky, Polynomial Primal-dual Affine Scaling Algorithms in Semidefinite Programming, Technical Report 96–42, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1996.

    Google Scholar 

  46. D. De Klerk, C. Roos, T. Terlaky, Initialization in Semidefinite Programming Via a Self-dual Skew-Symmetric Embedding, Report 96–10, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands, 1996.

    Google Scholar 

  47. D. E. Knuth,The Sandwich Theorem, The Electronic Journal of Combinatorics 1 (1994), #A1.

    Google Scholar 

  48. M. Kojima, M. Shida and S. Shindoh, Global and Local Convergence of Predictor-Corrector Infeasible-Interior-Point Algorithms for Semidefinite Programs, Technical Report B-305, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan, 1996.

    Google Scholar 

  49. J.B. Lasserre, Linear Programming with Positive Semi-definite Matrices, To appear inMathematical Problems in Engineering, 1994.

    Google Scholar 

  50. M. Laurent, S. Poljak, On a Positive Semidefinite Relaxation of the Cut Polytope, To appear inLinear Algebra and its Applications, 1996.

    Google Scholar 

  51. M. Laurent, The Real Positive Semidefinite Completion Problem for Series- Parallel Graphs,Preprint, 1995.

    Google Scholar 

  52. A.S. Lewis, Eigenvalue Optimization,ACTA Numerica (1996), pp. 149–190.

    Google Scholar 

  53. L. Lovász, On the Shannon Capacity of a GraphIEEE Transactions on Information Theory IT-25 (1979), pp. 1–7.

    Google Scholar 

  54. L. Lovász and A. Schrjiver,Cones of Matrices and Set Functions and 0–1 Optimization, SIAM J. Opt. 1 (1991), pp. 166–190.

    Article  MATH  Google Scholar 

  55. L. Lovász, Combinatorial Optimization: Some Problems and Trends, DIMACS Tech Report, 92–53, 1992.

    Google Scholar 

  56. R.D.C. Monteiro, Primal-Dual Algorithms for Semidefinite Programming, Working Paper, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA, 1995.

    Google Scholar 

  57. R.D.C. Monteiro, I. Adler, M.G.C. Resende, A Polynomial-time Primal-dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and its Power Series Extension,Mathematics of Operations Research, Vol. 15 (1990), pp. 191–214.

    Article  MathSciNet  MATH  Google Scholar 

  58. R.D.C. Monteiro and J.-S. Pang, On Two Interior Point Mappings for Nonlinear Semidefinite Complementarity Problems, Working Paper, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA, 1996."

    Google Scholar 

  59. Y. Nesterov and A. Nemirovskii,Interior Point Polynomial Methods for Convex Programming:Theory and Applications, SIAM, Philadelphia, 1994.

    Google Scholar 

  60. Y. Nesterov and M.J. Todd, Self-scaled Barriers and Interior-point Methods in Convex Programming, TR 1091, School of OR and IE, Cornell University, Ithaca, NY 1994.

    Google Scholar 

  61. Y. Nesterov, M.J. Todd, Primal-dual Interior-point Methods for Self- scaled Cones, TR 1125, School of OR and IE, Cornell University, Ithaca, NY 1995.

    Google Scholar 

  62. M.L. Overton, On Minimizing the Maximum Eigenvalue of a Symmetric Matrix,SIAM J. Matrix Anal Appl, Vol. 9 (1988) pp. 256–268.

    Article  MathSciNet  MATH  Google Scholar 

  63. M.L. Overton, Large-Scale Optimization of Eigenvalues,SIAM J. Optimization, Vol. 2 (1992), pp. 88–120.

    Article  MathSciNet  MATH  Google Scholar 

  64. M.L. Overton and R.S. Womersley, Second Derivatives for Eigenvalue OptimizationSIAM J. Matrix Anal. Appl., Vol. 16 (1995), pp. 697–718.

    Article  MathSciNet  MATH  Google Scholar 

  65. M.L. Overton and R.S. Womersley, Optimality Conditions and Duality Theory for Minimizing Sums of the Largest Eigenvalues of Symmetric Matrices,Math. Programming, Vol. 62 (1993), pp. 321–357.

    Article  MathSciNet  MATH  Google Scholar 

  66. P.M. Pardalos, Continuous Approaches to Discrete Optimization Problems, InNonlinear Optimization and Applications, G. Di Pillo jade F. Giannessi, Ed., Plenum Publishing (1996).

    Google Scholar 

  67. P.M. Pardalos, M.G.C Resende, Interior Point Methods for Global Optimization,Chapter 12 of this volume.

    Google Scholar 

  68. G. Pataki, On the Facial Structure of Cone-LP’s and Semidefinite Programs, Management Science Research Report MSRR-595, GSIA, Carnegie-Mellon University, 1994.

    Google Scholar 

  69. G. Pataki, On the Multiplicity of Optimal Eigenvalues,Technical Report, GSIA, 1994.

    Google Scholar 

  70. G. Pataki, Cone-LP’s and Semidefinite Programs: Geometry, Basic Solutions and a Simplex-type Method, Management Science Research Report MSRR-604, GSIA, Carnegie-Mellon University, 1994.

    Google Scholar 

  71. F.A. Potra and R. Sheng, A Superlinearly Convergent Primal-dual Infeas- ible-interior-point Algorithm for Semidefinite Programming, Reports on Computational Mathematics, No. 78, 1995, Dept. of Mathematics, The University of Iowa, Iowa City, USA.

    Google Scholar 

  72. L. Porkolab and L. Khachiyan, On the Complexity of Semidefinite Programs, RUTCOR Research Report, RRR 40–95, Rutgers University, New Brunswick, NJ-08903.

    Google Scholar 

  73. M. Shida and S. Shindoh, Monotone Semidefinite Complementarity Problems, Technical Report B-312, 1996, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan.

    Google Scholar 

  74. N.Z. Shor, Quadratic Optimization Problems,Soviet Journal of Computer and Systems Sciences, Vol. 25 (1987), pp. 1–11.

    MathSciNet  MATH  Google Scholar 

  75. M.V. RamanaAn Algorithmic Analysis of Multiquadratic and Semidefinite Programming Problems, Ph.D. Thesis, The Johns Hopkins University, Baltimore, 1993.

    Google Scholar 

  76. M. Ramana, An Exact Duality Theory for Semidefinite Programming and its Complexity Implications. DIMACS Technical Report, 95–02R, DIMACS, Rutgers University, 1995. To appear inMath Programming. Can be accessed at http://www.ise.ufl.edu/~ramana.

    Google Scholar 

  77. M.V. Ramana, On Polyhedrality in Semidefinite ProgrammingIn preparation, 1996

    Google Scholar 

  78. M.V. Ramana and R.M. Freund, A Corrected Primal for Semidefinite Programming, with Strong Duality,In Preparation, 1996.

    Google Scholar 

  79. M.V. Ramana and A.J. Goldman, Some Geometric Results in Semidefinite Programming,Journal Glob. Opt., Vol. 7 (1995), pp. 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  80. M.V. Ramana and A.J. Goldman, Quadratic Maps with Convex Images, Submitted toMath, of OR, 1995. Can be accessed at http://www.ise.ufl.edu/~ramana.

    Google Scholar 

  81. M.V. Ramana and A.J. Goldman, A Newton-like Method for Nonlinear Semidefinite Inequalities. Submitted toSIAM J. Optim., 1996. Can be accessed at http://www.ise.ufl.edu/~ramana.

    Google Scholar 

  82. M.V. Ramana, E.R. Scheinerman and D. Ullman, Fractional Isomorphism of Graphs,Disc. Math., Vol. 132 (1994), pp 247–265.

    Article  MathSciNet  MATH  Google Scholar 

  83. M.V. Ramana, L. Tunçel and H. Wolkowicz, Strong Duality in Semidefinite Programming, To appear inSIAM J. Optimization, 1995. Can be accessed at http://www.ise.ufl.edu/~ramana.

    Google Scholar 

  84. T.R. Rockafellar, Convex Analysis,Princeton University Press, Princeton, 1970

    MATH  Google Scholar 

  85. A. Shapiro, First and Second Order Analysis of Nonlinear Semidefinite Programs, To appear inMath Programming, 1996.

    Google Scholar 

  86. M. Shida and S. Shindoh, Monotone Semidefinite Complementarity Problems, Technical Report B-312, 1996, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan.

    Google Scholar 

  87. J.F. Sturm and S. Zhang, Symmetric Primal-dual Path Following Algorithms for Semidefinite Programming, Technical Report 9554/A, 1995, Tinber- gen Institute, Erasmus University Rotterdam.

    Google Scholar 

  88. J.F. Sturm and S. Zhang, Superlinear Convergence of Symmetric Primal- dual Path Following Algorithm for Semidefinite Programming, Technical Report 9607/A, 1996, Tinbergen Institute, Erasmus University Rotterdam.

    Google Scholar 

  89. T. Tsuchiya, Affine Scaling Algorithm,Chapter 2 of this volume.

    Google Scholar 

  90. T. Tsuchiya and M. Muramatsu, Global Convergence of a Long-step Affine Scaling Algorithm for Degenerate Linear Programming ProblemsSIAM J Optim, Vol. 5 (1995), pp. 525–551.

    Article  MathSciNet  MATH  Google Scholar 

  91. L. Vandenberghe and S. Boyd, Positive-Definite ProgrammingMathematical Programming:State of the Art 1994, J-R Birge and K.G. Murty ed s, U. of Michigan, 1994.

    Google Scholar 

  92. L. Vandenberghe and S. Boyd,Semidefinite Programming, SIAM Review, 38 (1996), pp. 49–95.

    Article  MathSciNet  MATH  Google Scholar 

  93. L. Vandenberghe, S. Boyd and Shac-Po Wu, Determinant Maximization with Linear Matrix Inequality Constraints, Technical Report, Information Systems Laboratory, Elec. Engg. Dept., Stanford University, Stanford, CA, 1996.

    Google Scholar 

  94. H. Whitney, Elementary Structure of Real Algebraic VarietiesAnnals of Math, Vol. 66 (1957), No. 3, pp. 545–556.

    Article  MathSciNet  MATH  Google Scholar 

  95. H. Wolkowicz, Some Applications of Optimization in Matrix Theory,Linear Algebra and its Applications, Vol. 40 (1981), pp. 101–118.

    Article  MathSciNet  MATH  Google Scholar 

  96. Y. Ye,A Class of Projective Transformations for Linear ProgrammingSIAM J. Comput, Vol. 19 (1990), pp. 457–466.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ramana, M.V., Pardalos, P.M. (1996). Semidefinite Programming. In: Terlaky, T. (eds) Interior Point Methods of Mathematical Programming. Applied Optimization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3449-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3449-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3451-4

  • Online ISBN: 978-1-4613-3449-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics