Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 5))

Abstract

This chapter deals with the interior point methods for solving complementarity problems. Complementarity problems provide generalized forms for nonlinear and/or linear programs and equilibrium problems. Among others, the monotone linear complementarity problem has two important applications in the mathematical programming, the linear program and the convex quadratic program. We focus on this problem and state its properties which serve as the theoretical backgrounds of various interior point methods. We provide two prototype algorithms in the class of interior point methods for the monotone linear complementarity problem and their theoretical views. Also we briefly refer to recent developments and further extensions on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. D. Andersen and Y. Ye. On a homogeneous algorithm for the monotone com-plementarity problem. Research Reports, Department of Management Sciences, University of Iowa, Iowa City, Iowa 52242, 1995.

    Google Scholar 

  2. M. Anitescu, G. Lesaja, and F. A. Potra. Equivalence between different formulations of the linear complementarity problem. Technical report, Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA, 1995.

    Google Scholar 

  3. R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno. Very large-scale programming: a case study in combining interior point and simplex methods.Operations Research, 40: 885–897, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. F. Bonnans and F. A. Potra. Infeasible path following algorithms for linear complementarity problems. Technical report, INRIA, B.P.105, 78153 Rocquencourt, France, 1994.

    Google Scholar 

  5. R. W. Cottle, J.-S. Pang, and R. E. Stone.The linear complementarity problem.Computer Science and Scientific Computing, Academic Press Inc, San Diego, CA92101, 1990.

    Google Scholar 

  6. D. den Hertog.Interior point approach to linear, quadratic and convex programming. Mathematics and Its Application, Vol. 277, Kluwer Academic Publishers, The Netherlands, 1994.

    Book  Google Scholar 

  7. A. V. Fiacco and G. P. McCormick.Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley k, Sons, New York, 1968.

    MATH  Google Scholar 

  8. M. Frank and P. Wolfe. An algorithm for quadratic programming.Naval Research Logistics Quarterly, 3: 95–110, 1956.

    Article  MathSciNet  Google Scholar 

  9. R. M. Freund. Polynomial-time algorithms for linear programming based only on primal scaling and projected gradients of a potential function.Mathematical Programming, 51: 203–222, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. S. Gowda. On reducing a monotone horizontal LCP to an LCP. Technical report, Department of Mathematics&Statistics, University of Maryland Baltimore County, Baltimore, Maryland 21228, 1994.

    Google Scholar 

  11. O. Güler. Generalized linear complementarity problems. Research Reports, Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland 21228–5398, 1992.

    Google Scholar 

  12. O. Güler. Existence of interior points and interior paths in nonlinear monotone complementarity problems.Mathematics of Operations Research, 18: 128–148, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  13. O. Güler. Barrier functions in interior point methods. Technical report,Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland 21228, USA, 1994.

    Google Scholar 

  14. P. T. Harkar and J.-S. Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications.Mathematical Programming, 48: 161–220, 1990.

    Article  MathSciNet  Google Scholar 

  15. B. Jansen, C. Roos, and T. Terlaky. A family of polynomial affine scaling algorithms for positive semi-definite linear complementarity problems. ISSN 0922–5641, Faculty of Technical Mathematics and Informatics, Delft University of technology, P.O.Box 5031, 2600 GA Delft, The Netherlands, 1993.

    Google Scholar 

  16. B. Jansen, K. Roos, T. Terlaky, and A. Yoshise. Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems. Technical Report 95–83, Faculty of Technical Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands, 1995.

    Google Scholar 

  17. F. Jarre. On the method of analytical centers for solving smooth convex programming. In S. Dolecki, editor,Optimization, pages 69–86, Berlin, Germany, 1988. Lecture Notes in Mathematics No. 1405, Springer Verlag.

    Google Scholar 

  18. F. Jarre. Interior-point methods via self-concordance of relative Lipschitz condition. Habilitationsschrift, Fakultät für Mathematik der Bayerrischen Julius- Maximilians- Universität Würzburg, 1994.

    Google Scholar 

  19. J. Ji, F. Potra, and S. Huang. A predictor-corrector method for linear complementarity problems with polynomial complexity and superlinear convergence. No. 18, Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, 1991.

    Google Scholar 

  20. J. Ji, F. Potra, R. A. Tapia, and Y. Zhang. An interior-point method with polynomial complexity and superlinear convergence for linear complementarity problems. TR91–23, Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, 1991.

    Google Scholar 

  21. J. Ji and F. A. Potra. An infeasible-interior-point method for the P*-matrix LCP. Technical report, Department of Mathematics and Computer Science, Valdosta State University, Valdosta, GA 31698, 1994.

    Google Scholar 

  22. J. Ji, F. A. Potra, and R. Sheng. A predictor-corrector method for solving the P*-matrix LCP from infeasible starting points. Technical report, Department of Mathematics and Computer Science, Valdosta State University, Valdosta, GA 31698, 1994.

    Google Scholar 

  23. N. Karmarkar. A new polynomial-time algorithm for linear programming.Combinatorica, 4: 373–395, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Kojima, Y. Kurita, and S. Mizuno. Large-step interior point algorithms for linear complementarity problems.SIAM J. Optimization, 3: 398–412, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Kojima, N. Megiddo, and T. Noma. Homotopy continuation methods for nonlinear complementarity problems.Mathematics of operations research, 16: 754 - 774, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise.A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems. Lecture Notes in Computer Science 538, Springer-Verlag, New York, 1991.

    Google Scholar 

  27. M. Kojima, S. Mizuno, and T. Noma. A new continuation method for complementarity problems with uniformP-functions.Mathematical Programming, 43: 107–113, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Kojima, S. Mizuno, and T. Noma. Limiting behavior of trajectories generated by a continuation method for monotone complementarity problems.Mathematics of Operations Research, 15: 662–675, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm for a class of linear complementary problems.Mathematical Programming, 44: 1–26, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear programming. In N. Megiddo, editor,Progress in Mathematical Programming, Interior-Point and Related Methods, pages 29–47, New York, 1989. Springer-Verlag.

    Google Scholar 

  31. M. Kojima, S. Mizuno, and A. Yoshise. An O xxx iteration potential reduction algorithm for linear complementarity problems.Mathematical Programming, 50: 331–342, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Kojima, S. Mizuno, and A. Yoshise. A little theorem of the bigM in interior point algorithms.Mathematical Programming, 59: 361–375, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Kojima, T. Noma, and A. Yoshise. Global convergence in infeasible-interior- point algorithms.Mathematical Programming, 65: 43–72, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone linear complementarity problem in symmetric matrices. Technical report, Department of Information Sciences, Tokyo Institute of Technology, 2–12–1 Oh- Okayama, Meguro-ku, Tokyo 152, Japan, 1994.

    Google Scholar 

  35. K. O. Kortanek and J. Zhu. A polynomial barrier algorithm for linearly constrained convex programming problems.Mathematics of Operations Research, 18: 116–127, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  36. I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experience with a primal-dual interior point method for linear programming.Linear Algebra and Its Applications, 152: 191–222, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  37. O. L. Mangasarian. Characterization of bounded solution sets of linear complementarity problems.Mathematical Programming Study, 19: 153–166, 1982.

    MathSciNet  Google Scholar 

  38. O. L. Mangasarian. Simple and computable bounds for solutions of linear complementarity problems and linear programsMathematical Programming Study, 25: 1–12, 1985.

    MathSciNet  MATH  Google Scholar 

  39. O. L. Mangasarian. Error bounds for nondegenerate monotone linear complementarity problemsMathematical Programming, 48: 437–445, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Marsten, R. Subramanian, M. Saltzman, I Lustig, and D. Shanno. Interior point methods for linear programming: Just call Newton, Lagrange and Fiacco and McCormick!Interfaces, 20: 105 - 116, 1990.

    Article  Google Scholar 

  41. L. McLinden. An analogue of Moreau’ s proximation theorem, with application to the nonlinear complementarity problem.Pacific Journal of Mathematics, 88: 101–161, 1980.

    MathSciNet  MATH  Google Scholar 

  42. K. A. McShane, C. L. Monma, and D. F. Shanno. An implementation of a primal-dual interior point method for linear programming.ORSA Journal on Computing, 1: 70–83, 1989.

    MATH  Google Scholar 

  43. N. Megiddo. A monotone complementarity problem with feasible solutions but no complementary solutions.Mathematical Programming, 12: 131–132, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  44. N. Megiddo. A note on the complexity ofP-matrix LCP and computing an equilibrium. Technical report, IBM Almadén Research Center and School of Mathematical Sciences, Tel Aviv University, 650 Harry Road, San Jose, CA 95120-6099, USA and Tel Aviv, Israel, 1988.

    Google Scholar 

  45. N. Megiddo . Pathways to the optimal set in linear programming. In N. Megiddo, editor,Progress in Mathematical Programming, Interior-Point and Related Methods, pages 131–158, New York, 1989. Springer-Verlag.

    Google Scholar 

  46. S. Mizuno. AnO(n 3 L) algorithm using a sequence for a linear complementarity problem.Journal of the Operations Research Society of Japan, 33: 66–75, 1990.

    MathSciNet  MATH  Google Scholar 

  47. S. Mizuno. A superlinearly convergent infeasible-interior-point algorithm for geometrical LCPs without a strictly complementary condition. Technical report, The Institute of Statistical Mathematics, 4–6–7 Minami-Azabu, Minato-ku, Tokyo, 106, Japan, 1994.

    Google Scholar 

  48. S. Mizuno, F. Jarre, and J. Stoer. An unified approach to infeasible-interior- point algorithms via geometrical linear complementarity problems. Technical report, The Institute of Statistical Mathematics, 4–6–7 Minami-Azabu, Minato- ku, Tokyo, 106, Japan, 1994.

    Google Scholar 

  49. S. Mizuno and M.J. Todd. AnO(n 3 L) adaptive path following algorithm for a linear complementarity problem. Mathematical Programming, 52: 587–595, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Mizuno, A. Yoshise, and T. Kikuchi. Practical polynomial time algorithms for linear complementarity problems.Journal of the Operations Research Society of Japan, 32: 75–92, 1989.

    MathSciNet  MATH  Google Scholar 

  51. R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part I: linear programmingMathematical Programming, 44: 27–41, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  52. R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part II: convex quadratic programming.Mathematical Programming, 44: 43–66, 1989.

    Google Scholar 

  53. R. D. C. Monteiro and J.-S.Pang.Properties of an interior-point mapping for mixed complementarity problems. Technical report, School of Industrial and Systems Engineering Georgia Institute of Technology, Atlanta, Georgia 30332–0205, 1993.

    Google Scholar 

  54. R. D. C. Monteiro and T. Tsuchiya. Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem. Technical report, Systems and Industrial Engineering, University Arizona, Tucson, AZ 85721, 1992.

    Google Scholar 

  55. R.D.C.Monteiro and S. Wright. Local convergence of interior-point algorithms for degenerate monotone LCP. Technical report, Systems and Industrial Engineering, University Arizona, Tucson, AZ 85721, 1993.

    Google Scholar 

  56. R.D.C. Monteiro and S. Wright. A superlinear infeasible-interior-point affine scaling algorithm for LCP. Technical report, Systems and Industrial Engineering, University Arizona, Tucson, AZ 85721, 1993.

    Google Scholar 

  57. R. D. C. Monteiro and S. Wright. Superlinear primal-dual affine scaling algorithms for LCP. Technical report, Systems and Industrial Engineering, University Arizona, Tucson, AZ 85721, 1993.

    Google Scholar 

  58. J.J. Moré. Class of functions and feasibility conditions in nonlinear complementarity problem.Mathematical Programming, 6: 327–338, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  59. J. E. Nesterov. New polynomial-time algorithms for linear and quadratic programming. Report at the 13-th International Symposium on Mathematical Programming, Central Economical and Mathematical Institute, USSR Acad. Sci., Krasikova str. 32, 117418 Moscow, USSR, 1988.

    Google Scholar 

  60. J. E. Nesterov and A. S. Nemirovsky. A general approach to polynomial-time algorithms design for convex programming. Report at the 13-th International Symposium on Mathematical Programming, Central Economical and Mathematical Institute, USSR Acad. Sci., Krasikova str. 32, 117418 Moscow, USSR, 1988.

    Google Scholar 

  61. J. E. Nesterov and A. S. Nemirovsky. Self-concordant functions and polynomial- time methods in convex programming. Technical report, Central Economical and Mathematical Institute, USSR Acad. Sci., Moscow, USSR, 1989.

    Google Scholar 

  62. Y. Nesterov and A. S. NemirovskyInterior point polynomial algorithms in Convex Programming. SIAM Studies in Applied Mathematics, Vol. 13, SIAM, Philadelphia, 1994.

    Google Scholar 

  63. T. Noma. A globally convergent iterative algorithm for complementarity problems — a modification of interior point algorithms for linear complementarity problems —. Dr. Thesis, Dept. of Systems Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1991.

    Google Scholar 

  64. J. M. Ortega and W. G. Rheinboldt.Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, Orlando, Florida 32887, 1970.

    MATH  Google Scholar 

  65. P.M. Pardalos and Y. Ye. The general linear complementarity problem. Technical report, Department of Computer Science, The Pennsylvania State University, University Park, PA 16802, 1990.

    Google Scholar 

  66. E. PolakComputational Methods in Optimization:A Unified Approach. Academic Press, New York, 1971.

    Google Scholar 

  67. F.A.Potra. AnO(nL) infeasible-interior-interior algorithm for LCP with quadratic convergence. Technical report, Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, 1994.

    Google Scholar 

  68. F.A.Potra and R. Sheng. A large-step infeasible-interior-point method for the p*-matrix LCP. Technical report, Department of Mathematics, University of Iowa, Iowa City, IA 52242, USA, 1994.

    Google Scholar 

  69. F.A.Potra and R. Sheng. A path following method for LCP with superlinearly convergent iteration sequence.Report on Computational Mathematics, No. 69/1995, Department of Mathematics, University of Iowa, Iowa City, IA 52242, 1995.

    Google Scholar 

  70. F.A.Potra and Y. Ye. Interior point methods for nonlinear complementarity problems. Technical report, Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242, 1991.

    Google Scholar 

  71. A. SchrijverTheory of Linear and Integer ProgrammingJohn-Wiley jade Sons, New York, 1986.

    MATH  Google Scholar 

  72. M. Shida, S. Shindoh, and M. Kojima. Centers of monotone generalized comple-mentarity problems. Research Reports on Information Science B-303, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2–12–1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1995.

    Google Scholar 

  73. J. Sun, J. Zhu, and G. Zhao. A predictor-corrector algorithm for a class of nonlinear saddle point problem. Technical report, Department of Decision Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 0511, 1994.

    Google Scholar 

  74. K. Tanabe.Centered Newton method for mathematical programming. In M. Iri and K. Yajima, editors,System Modelling and Optimization, pages 197–206. Springer-Verlag, 1988.

    Google Scholar 

  75. K. Tanabe. A posteriori error estimate for an approximate solution of a general linear programming problem. In K. Tone, editor,New Methods for Linear Programming 2, pages 118–120, 4–6–7 Minamiazabu, Minato-ku, Tokyo 106, Japan, 1988. The Institute of Statistical Mathematics.

    Google Scholar 

  76. M. J. Todd. Projected scaled steepest descent in Kojima-Mizuno-Yoshise’ s potential reduction algorithm for the linear complementarity problem. Technical Report No. 950, School of Operations Research and Industrial Engineering, College of Engineering, Cornell University, Ithaca, New York 14853–3801, 1990.

    Google Scholar 

  77. M.J. Todd and Y. Ye. A centered projective algorithm for linear programming.Mathematics of Operations Research, 15: 508–529, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  78. R. H. Tütüncü and M. J. Todd. Reducing horizontal linear complementarity problems. Technical report, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853, USA, 1994.

    Google Scholar 

  79. H. Väliaho. P*-matrices are just sufficient. Technical report, Department of Mathematics, University of Helsinki, Helsinki, Finland, 1995.

    Google Scholar 

  80. S. Wright. A superlinear infeasible-interior-point algorithm for monotone nonlinear complementarity problems. Technical report, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, 1993.

    Google Scholar 

  81. S. J. Wright. A path-following interior-point algorithm for linear and quadratic problem. Preprint MCS-P40101293, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, 1994.

    Google Scholar 

  82. X. Xu, P.-F. Hung, and Y. Ye. A simplified homogeneous and self-dual linear programming algorithm and its implementation. Technical report, Institute of Systems Science, Academia Sinica, Beijing 100080, China, 1993.

    Google Scholar 

  83. Y. Ye. A class of potential functions for linear programming. Technical report, Integrated Systems Inc., Santa Clara, CA and Department of Engineering- Economic Systems, Stanford University, Stanford, CA, 1988.

    Google Scholar 

  84. Y. Ye. A further result on the potential reduction algorithm for theP-matrix linear complementarity problem. Technical report, Department of Management Sciences, The University of Iowa, Iowa City, Iowa 52242, 1988.

    Google Scholar 

  85. Y. Ye. The potential algorithm for linear complementarity problems. Technical report, Department of Management Sciences, The University of Iowa, Iowa City, Iowa 52242, 1988.

    Google Scholar 

  86. Y. Ye. AnO(n 3 L) potential reduction algorithm for linear programming.Mathematical Programming, 50: 239–258, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  87. Y. Ye. On homogeneous and self-dual algorithm for LCP. Technical report, Department of Management Sciences, The University of Iowa, Iowa City, Iowa 52242, 1994.

    Google Scholar 

  88. Y. Ye and K. Anstreicher. On quadratic andO \(\left( {\sqrt {n} L} \right)\) convergence of a predictor- corrector algorithm for LCP.Mathematical Programming, 59: 151–162, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  89. Y. Ye, M. J. Todd, and S. Mizuno. AnO \(\left( {\sqrt {n} L} \right)\)-itetation homogeneous and self-dual linear programming algorithm. Technical report, Department of Management Sciences, The University of Iowa, Iowa City, Iowa 52242, 1992.

    Google Scholar 

  90. Y. Zhang. On the convergence of a class of infeasible interior-point methods for horizontal linear complementarity problem. Research Report 92-07, Department of Mathematics and Statistics University of Maryland Baltimore County, Baltimore, Maryland 21228–5398, 1992.

    Google Scholar 

  91. J.Zhu. A path following algorithm for a class of convex programming problemsZeitschrift für Operations Research, 36: 359–377, 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yoshise, A. (1996). Complementarity Problems. In: Terlaky, T. (eds) Interior Point Methods of Mathematical Programming. Applied Optimization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3449-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3449-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3451-4

  • Online ISBN: 978-1-4613-3449-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics