Skip to main content

Possible Benthic Fauna and Slope Instability Relationships

  • Chapter
Marine Slides and Other Mass Movements

Part of the book series: NATO Conference Series ((NATOCS,volume 6))

Abstract

Two major types of interactions between benthic fauna and submarine slides are addressed in this paper: (1) the contribution of biological activity to slope instability and (2) the biological consequences of submarine slope failure. Through the processes of bioturbation and bioerosion, benthic fauna can substantially alter the physical properties of their substrata. Activities that lead to structural weakening of both sediment and outcrop are: consistent reworking of sediment preventing consolidation; excavation of sediment and semi-consolidated clay resulting in the net transport of material downslope; boring of outcrops causing decrease of rock mass; and attachment to outcrops resulting in increased drag force and gravitational pull on their surfaces. Along the continental margins located off both the east and west coasts of the U.S., the activity of benthic fauna appears to play a major role in contemporary submarine erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boesch, D.F. 1973. Classification and community structure of macrobenthos in the Hampton Roads Area, Virginia. Mar. Biol. 21:226.

    Article  Google Scholar 

  • Brongersma-Sanders, M. 1957. Mass mortality in the sea. in: “Treatise on Marine Ecology and Paleoecology”, J.W. Hedgepeth, ed., Geol. Soc. Amer., Mem. 67 Vol 1.

    Google Scholar 

  • Cacchione, E.A., G.T. Rowe, and A. Malahoff. 1978. Submersible investigation of outer Hudson submarine canyon, in: “Sedimen- tation in Submarine Canyons, Fans, and Trenches”, D.J. Stanley and G. Kelling, eds., pp. 42.

    Google Scholar 

  • Desbruyeres, D., J.Y. Bervas and A. Khripounoff. 1980. Un cas de colonisation rapide dfun sediment profond. Oceanologica Acta 3(3):285.

    Google Scholar 

  • Dillon, W.P. and H.B. Zimmerman. 1970. Erosion by biological activity in two New England Submarine Canyons. J. Sed. Petrol. 40(2):542.

    Google Scholar 

  • Fauchald, K. and P.A. Jumars. 1979. The diet of worms: A study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev. 17:193.

    Google Scholar 

  • Grassle, J.F. 1977. Slow recolonization of deep-sea sediment. Nature 265 (5595): 618.

    Article  ADS  Google Scholar 

  • H.L. Sanders. 1973. Life histories and the role of disturbance. Deep-Sea Res. 20:643.,

    Google Scholar 

  • J.P. Grassle. 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. J. Mar. Res. 32(2):253.

    Google Scholar 

  • Griggs, G.B., A.G. Carey, Jr. and L.D. Kulm. 1969. Deep-sea sedimentation and sediment-fauna interaction in Cascadia Channel and on Cascadia Abyssal Plain. Deep-Sea Res. 16: 157.

    Google Scholar 

  • Heezen, B.C., M. Ewing and R.J. Menzies. 1955. The influence of submarine turbidity currents on abyssal productivity. Oikos 6(2):170.

    Article  Google Scholar 

  • C.D. Hollister. 1971. “The Face of the Deep”, Oxford University Press.

    Google Scholar 

  • Jannasch, H.W., and C.O. Wirsen. 1977. Microbial life in the deep-sea. Sci. Amer. 236:42.

    Article  Google Scholar 

  • Jumars, P.A. 1977. Potential environmental impact of deep-sea manganese nodule mining:community analysis and prediction. Final Report prepared for Mar. Ecosystem Analysis Program Office of the NOAA.

    Google Scholar 

  • Spatial autocorrelation with RUM (Remote Underwater Manipulator): vertical and horizontal structure of a bathyal benthic community. Deep-Sea Res. 25:589.

    Article  Google Scholar 

  • R.R. Hessler. 1976. Hadal community structure: Implications from the Aleutian Trench. J. Mar. Res. 34(4):547.

    Google Scholar 

  • Kranz, P.M. 1974. The anastrophic burial of bivalves and its paleoecological significance. J. Geol. 82:237.

    Article  ADS  Google Scholar 

  • Malahoff, A., R.W. Embley and D.J. Fornari. 1981. Geomorphology of Norfolk and Washington Canyons and the surrounding continental slope and upper rise as observed from DSRV ALVIN. in_: “Heezen Memorial Volume”, R. Scrutton, ed., J. Wiley and SonT, London.

    Google Scholar 

  • Maurer, D.L., R.T. Keck, J.C. Tinsman, W.A. Leathern, C.A. Wethe, M. Huntzinger, C. Lord and T.M. Church. 1978. Vertical migra- tion of benthos in simulated dredged material oyerburdens. Dredged Material Research Program Tech. Rep. D-78-35 1: 1.

    Google Scholar 

  • McCall, P.L. 1977. Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound. J. Mar. Res. 35(2): 221.

    Google Scholar 

  • Neumann, A.C. 1966.Observations on coastal erosion in Bermuda and measurements on the boring rate of the sponge, Cliona lampa. Limnol. Oceanogr. 11:92.

    Article  Google Scholar 

  • Nichols, J.A., G.T. Rowe, C.H. Clifford and R.A. Young. 1978. In situ experiments on the burial of marine invertebrates. J. Sedimentary Petrol. 48(2):419.

    Google Scholar 

  • Paul, A.Z., E.M. Thorndike, L.G. Sullivan, B.C. Heezen and R.D. Gerard. 1978. Observations of the deep-sea floor from 202 days of time-lapse photography. Nature 222: 812.

    Article  ADS  Google Scholar 

  • Rhoads, D.C. 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. Ann. Rev. 12:263.

    Google Scholar 

  • R.C. Aller and M.B. Goldhaber. 1977. The influence of colonizing benthos on physical properties and chemical dia-genesis of the estuarine seafloor. in: “Ecology of Marine Benthos”, B.C. Coull, ed., Belle W. Baruch Library in Marine Sci. #6.

    Google Scholar 

  • Rowe, G.T. 1974. The effects of the benthic fauna on the physical properties of deep-sea sediments, in: “Deep-Sea Sediments”. A.L. Inderbitzen, ed., Plenum Press.

    Google Scholar 

  • G. Keller, H. Edgerton, N. Staresinic and J. MacillvaineTime-lapse photography of the biological reworking sediments in Hudson Submarine Canyon. J. Sediment Petrol. 44(2): 549.

    Google Scholar 

  • Ryan, W.B.F. and B.C. Heezen. 1976. Smothering of deep-sea benthic communities, from natural disasters. Tech. Rept. prepared for Mar. Ecosystem Analysis Program office for the NOAA.

    Google Scholar 

  • M.B. Cita, E.L. Miller, D. Hanselman, W.D. Nesteroff, B. Hecker and M. Nibbelink. 1978. Bedrock geology in New England submarine canyons. Qceanologica Acta 1 (2): 233.

    Google Scholar 

  • Smith, K.L., and R.R. Hessler. 1974. Respiration of benthopelagic fishes: in situ measurements at 1230 meters. Sei. 184: 72.

    Google Scholar 

  • J.M. Teal. 1973. Deep-sea community respiration: an in situ study at 1850 meters. Sei. 179: 282.

    Google Scholar 

  • Stanley, D.T. 1971. Bioturbation and sediment failure in some submarine canyons. Vie et Milieu. Suppl., 22: 541.

    Google Scholar 

  • Turekian, K.K., K. Cochran, D,P. Kharkar, R.M. Cerrato, J.R. Vaisnys, H.L. Sanders, J.F. Grassle and J.A. Allen. 1975. Slow growth rate of deep-sea clam determined by 228Ra chronology. Proc. Nat. Acad. Sei. 72:2829.

    Article  ADS  Google Scholar 

  • Turner, R.D. 1973. Wood-boring bivalves, opportunistic species in the deep-sea. Sei. 180: 1377.

    Google Scholar 

  • Wood, mollusks and deep-sea food chains. Bull. Amer. Malacological Union, Inc. 13.

    Google Scholar 

  • Valentine, P.C., J.R. Uzmann and R.A. Cooper. 1980. Geology and biology of Oceanographer submarine canyon. Mar. Geol. 38:283.

    Article  Google Scholar 

  • Warme, J.E., T.B. Scanland and N.F. Marshall. 1971. Submarine canyon erosion: Contribution of marine rock burrowers. Sei. 173:1127.

    Google Scholar 

  • R.A. Slater, and R.A. Cooper. 1978. Bioerosion and sub- marine canyons. in: “Sedimentation in Submarine Canyons, Fans, and Trenches”, D. J7 Stanley and G. Kelling, eds., pp. 65.

    Google Scholar 

  • Woodin, S.A. 1974. Polychaete abundance patterns in a marine soft-sediment environment: the importance of biological interactions. Ecol. Monogr. 44:171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Hecker, B. (1982). Possible Benthic Fauna and Slope Instability Relationships. In: Saxov, S., Nieuwenhuis, J.K. (eds) Marine Slides and Other Mass Movements. NATO Conference Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3362-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3362-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3364-7

  • Online ISBN: 978-1-4613-3362-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics