Skip to main content

The Born-Oppenheimer Approximation

  • Chapter
Rigorous Atomic and Molecular Physics

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 74))

Abstract

In physics and chemistry the Born-Oppenheimer approximation is a very important method for analyzing the spectrum of molecules1). It is based on the important fact that the molecular Schrödinger operator contains one small parameter, the ratio k4 of the electronic to the nuclear mass2). Perturbation theory in this parameter is however very singular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aguilar J. and Combes J.M., 1971; A class of Analytic Perturbations for One-body Schrödinger Hamiltonians, Com.Math.Phys. 22, 269–279.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Born M. and Oppenheimer R., 1927; Zur Quantentheorie der Molekeln, Annalen der Physik 84, 457.

    Article  ADS  Google Scholar 

  • Brattsev V.F., 1965; Dokl.Akad.Nauk. SSSR 16o, 570.

    Google Scholar 

  • Brezin E. and Zinn-Justin J., 1979; Expansion of the \(H_2^ + \) ground state energy in inverse powers of the distance between the two protons; Le journal de physique, lettres, 40L-511.

    Google Scholar 

  • Combes J.M. and Seiler R., 1978; Regularity and Asymptotic Properties of the Discrete Spectrum of Electronic Hamiltonians; Int.J. of Quantum Chemistry 14, 213.

    Article  Google Scholar 

  • Combes J.M. and Seiler R., 1980; Spectral Properties of Atomic and Molecular Systems, Ed.G.Wooley, Plenum.

    Google Scholar 

  • Combes J.M., Duclos P. and Seiler R.,1981; Decoupling and Krein’s Formula I, to appear.

    Google Scholar 

  • Combes J.M. and Thomas L., 1973; Asymptotic Behaviour of Eigenfunctions for Multiparticle Schrödinger Operators; Commun.math.Phys. 34, 251.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Deift P., Hunziker W., Simon B., Vock E.,1979; Pointwise Bounds of Eigenfunctions and Wave Packets in N-Body Quantum Systems IV; Com. Math. Phys. 64, 1–34.

    Google Scholar 

  • Dieudonné J., 1968; Calcul Infinitesimal, Chapter VIII. 7, Herman, Paris.

    Google Scholar 

  • Duclos P., Thèse, Dept.de Mathématique Université de Toulon.

    Google Scholar 

  • Epstein S., 1966; Ground-State Energy of a Molecule in the Adiabatic Approximation, J.Chem.44, 863 and 44, 4062.

    Google Scholar 

  • Herring C., 1962; Critique of the Heitler-Landau method of calculating spin coupling at large distances, Rev.Mod.Phys. 34, 631–645.

    Article  MathSciNet  ADS  Google Scholar 

  • Hoffmann-Osterhoff T., 1980; A Compairison Theorem for Differential Inequalities with Applications in Quantum Mechanics; Journal of Physics AB, 417.

    Google Scholar 

  • Hoffmann-Osterhoff M. and Seiler R., 1981; to appear in Phys. Rev.A.

    Google Scholar 

  • Kato T., 1966; Perturbation theory for linear Operators, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Kato T., 1957; Commun.Pure and Appl.Math. X, 151.

    Article  Google Scholar 

  • Komarov J.N., Ponomarev L.I., Slavianov S.I., 1976; Spherical and Coulomb Spheroidal functions. Nauka, Moscow (in Russian).

    Google Scholar 

  • Krein M., 1946; Über Resolventen hermitescher Operatoren mit Defektindex (m,m) Doklady Akad.Nauk. SSSR 52 No. 8, 657–660.

    MathSciNet  Google Scholar 

  • Lieb E. and Simon B., 1978; Monotonicity of the Electronic Contribution to the Born-Oppenheimer Energy, J.Phys.B. 5 37.

    Google Scholar 

  • Morgan J.D. Ill and Simon B., 1980; Behavior of Molecular Potential Energy Curves for Large Nuclear Seperations; Int.J.Quant. Chemistry, 17, 1143.

    Article  Google Scholar 

  • Pack R.T. and Hirschfelder J.O., 1968; Separation of Rotational Coordinates from the N-electrons Diatomic Schrödinger Equation, Journal of Chemical Physics 49, 4009–4020.

    Article  MathSciNet  ADS  Google Scholar 

  • Protter M.H. and Weinberger H.F.,1967; Maximum Principles in Differential Equations, Prentice-Hall, Juc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Combes, J.M., Duclos, P., Seiler, R. (1981). The Born-Oppenheimer Approximation. In: Velo, G., Wightman, A.S. (eds) Rigorous Atomic and Molecular Physics. NATO Advanced Study Institutes Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3350-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3350-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3352-4

  • Online ISBN: 978-1-4613-3350-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics