Skip to main content

Some Applications and Misapplications of Induced Polyploidy to Plant Breeding

  • Chapter
Polyploidy

Part of the book series: Basic Life Sciences ((BLSC,volume 13))

Abstract

Plant breeders are eternal optimists, always searching for and expecting significant breakthroughs in plateaus of yield, quality, or adaptation. These breakthroughs have been achieved in some crops, notably maize (Zea mays) and grain sorghum (Sorghum bicolor) (1); but they have been elusive in others, particularly forage crops, in which conventional breeding methods have usually produced disappointing results (2,3). With the 1937 discovery of the “colchicine technique” for inducing Polyploidy, breeders seized upon this then-unconventional technique as a means of penetrating yield barriers. Since 1937, breeders, using polyploid methods on many crops, have gone through repeated cycles of high expectations followed by low realizations. The foremost lesson to be learned from the breeders’ 40-year experience (“struggle” may be a better word) with induced Polyploidy is that it is not a panacea for plant improvement. Nevertheless, as a forage breeder-cyto-geneticist, I still look on the intelligent manipulation of Polyploidy as one of the most, if not the most, promising means of improving yields of certain crop plants, particularly the perennial forages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. National Plant Genetics Resources Board, 1979, Plant genetic resources: conservation and use. Unnumbered publication, 20 pp. U.S. Govt. Printing Office. Washington D.C.

    Google Scholar 

  2. Hanson, A.A., 1972, Breeding of grasses, pp. 36–52, in Younger, V. B., McKell, C.M. (eds.), “The Biology and Utilization of Grasses,” Academic Press, New York.

    Google Scholar 

  3. van Bogaert, G., 1977, Scope for improving the yield of grasses and legumes by breeding and selection, pp. 29–35, in Gilsenan, B. (ed.), “Proc. Inter. Meeting on Animal Production from Temperate Grassland,” Dublin.

    Google Scholar 

  4. Stebbins, G.L., 1956, Artificial Polyploidy as a tool in plant breeding, pp. 37–52, to “Genetics in Plant Breeding,” Brookhaven Symposia in Biology No. 9. Brookhaven National Laboratory, Upton, New York.

    Google Scholar 

  5. Hecker, R.J., Strafford, R.E., Helmerick, R.H., Maag, G.W., 1970, Comparison of the same sugarbeet F- hybrids as diploids, triploids, and tetraploids. Amer. Soc. Sugarbeet Tech. 16: 106–116.

    Article  Google Scholar 

  6. Hornsey, K.G., 1974, The exploitation of Polyploidy in sugarbeet breeding. J. Agric. Sei. Camb. 84: 543–557.

    Article  Google Scholar 

  7. Hornsey, K.G., 1970, The future for polyploids. Br. Sugar- beet Rev. 38: 163-170.

    Google Scholar 

  8. Frame, J., 1976, The potential of tetraploid red clover and its role in the United Kingdom. J. Br. Grassland Soc. 31: 139–152.

    Article  Google Scholar 

  9. Einset, J., Pratt, C., 1975, Grapes, pp. 130–153, in Janick, J., Moore, J.N. (eds.), “Advances in Fruit Breeding,” Purdue University Press, West Lafayette, Indiana.

    Google Scholar 

  10. Yamashita, K., Kihara, H., Nishiyama, I., Matsumara, S., Matsumoto, K., 1957, Polyploidy breeding in Japan. Proc. Inter. Genetics Symp. 1956: 341–346.

    Google Scholar 

  11. Tsitsin, N.V., 1975, Organization of new species and forms of plants. Address to the Twelfth International Botanical Congress. Leningrad, 23 pp.

    Google Scholar 

  12. Gustafson, J.P., 1976, The evolutionary development of triticale: The wheat-rye hybrid. Evol. Biol. 9: 107–135.

    Google Scholar 

  13. Larter, E.N., Gustafson, J.P., Zillinsky, F.J., 1978, Welsh triticale. Canad. J. Plant Sei. 58: 879–880.

    Article  Google Scholar 

  14. Chaplin, J.F., Mann, T.J., 1961, Interspecific hybridization, gene transfer, and chromosomal substitution in Nicotiana. North Carolina State College Tech. Bull. 145. 31 pp.

    Google Scholar 

  15. Culp, T.W., Harrell, D.C., 1973, Breeding methods for improving yield and fiber quality of upland cotton (Gossypium hirsutum L.). Crop Sei. 13: 686–689.

    Article  Google Scholar 

  16. Webster, G.T., Buckner, R.C., 1971, Cytology and agronomic performance of Lolium-Festuca hybrid derivatives. Crop Sei. 11: 109–112.

    Article  Google Scholar 

  17. Tsitsin, N.V. (ed.), 1960, “Wide Hybridization in Plants,” Israel Program for Scientific Publications, Jerusalem, 364 pp.

    Google Scholar 

  18. Eigsti, O.J., Dustin, A.P., 1955, “Colchicine in Agriculture, Medicine, Biology, and Chemistry,” Iowa State College Press, Ames, 470 pp.

    Google Scholar 

  19. Levan, A., 1945, Polyploidiförädlingens nuravande läge. Sverges Utsädesför. Tidskr. 55: 109–143.

    Google Scholar 

  20. McWilliam, J.R., 1974, Interspecific hybridization in Phalaris, pp. 243–249, Proc. X II Inter. Grassland Congress.

    Google Scholar 

  21. Cauderon, Y., 1977, Alloploidy, pp. 131–143, “Interspecific Hybridization in Plant Breeding,” Proc. 8th Eucarpia Congress, Madrid.

    Google Scholar 

  22. van Bogaert, G., 1975, A comparison between colchicine induced tetraploid and diploid cultivars of Lolium species, pp. 61 - 78, in Nuesch, B. (ed.), “Ploidy in Fodder Crops,” Eucarpia Report, Zurich, Switzerland.

    Google Scholar 

  23. Asay, K.H, Dewey, D.R., 1979, Bridging ploidy differences in crested wheatgrass. Crop Sei. 19: 519–523.

    Article  Google Scholar 

  24. Dewey, D.R., 1965, Morphology, cytology, and fertility of synthetic hybrids of Agropyron spieatum X Agropyron dasystach- yum-riparium. Bot. Gaz. 126: 269–275.

    Article  Google Scholar 

  25. Dewey, D.R., 1979, The Hordeum violaceum complex of Iran. Amer J. Bot. 66: 166–172.

    Article  Google Scholar 

  26. Rajhathy, T., Morrison, J.W., Symko, S., 1963, Interspecific and intergeneric hybrids in Hordeum, pp. 194–212, in “Barley Genetics I,” Proc. 1st Inter. Barley Genet. Symp., Wageningen.

    Google Scholar 

  27. Stebbins, G.L., Snyder, L.A., 1956, Artificial and natural hybrids in the Gramineae, tribe Hordeae. IX. Hybrids between western and eastern North American species. Amer. J. Bot. 43: 305–312.

    Article  Google Scholar 

  28. Dewey, D.R., 1975, Genome relations of diploid Agropyron libanoticum with diploid and autotetraploid Agropyron stipi- folium. Bot. Gaz. 136: 116–121.

    Article  Google Scholar 

  29. Carnahan, H.L., Hill, H.D., 1961, Cytology and genetics of forage grasses. Bot. Rev. 27: 1–162.

    Article  Google Scholar 

  30. Jones, K., 1962, Chromosomal status, gene exchange, and evolution in Dactylis. 2. The chromosomal analysis of diploid, tetraploid, and hexaploid species and hybrids. Genetica 32: 272–295.

    Article  Google Scholar 

  31. Lesins, K., Singh, S.M., Baysal, I., Sadasaviah, R.S., 1975, An attempt to breed hexaploid alfalfa (Medicago spp.). Z. Pflanzenzuchtg. 75: 192–204.

    Google Scholar 

  32. Clausen, J., Keck, D.D., Hiesey, W.M., 1945, Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Carnegie Inst. Washington, Publ. No. 564. 174 pp.

    Google Scholar 

  33. Kruse, A., 1969, Intergeneric hybrids between Triticum aestivum L. (v. Koga II, 2n=42) and Avena sativa L. (v. Stal. 2n=42) with pseudogamous seed formation. Kgl. Vet.-og Landbohjsk. Arsskr. 1969: 188–200.

    Google Scholar 

  34. Lovej R.M., 1972, Selection and breeding of grasses for forage and other uses, pp. 66–73, in Younger, V. B., McKell, C.M. (eds.), “The Biology and Utilization of Grasses,” Academic Press, New York.

    Google Scholar 

  35. Asay, K.H., Dewey, D.R., 1976, Fertility of 17 colchicine- induced perennial Triticeae amphiploids through four generations. Crop Sci. 16: 508–513.

    Article  Google Scholar 

  36. Dewey, D.R., 1977, Morphology, cytology, and fertility of F1 and induced-amphiploid hybrids of Elymus canadensis X Agropyron subsecundum. Crop Sci. 17: 106–111.

    Article  Google Scholar 

  37. Welsh Plant Breeding Station Annual Report., 1977, Aberystwyth varieties currently in agriculture, pp. 242–249.

    Google Scholar 

  38. Riley, R., 1974, Cytogenetics of chromosome pairing in wheat. Genetics 78: 193–203.

    PubMed  CAS  Google Scholar 

  39. Jauhar, P.P., 1975, Genetic control of diploid-like meiosis in hexaploid tall fescue. Nature 25: 595–597.

    Article  Google Scholar 

  40. Knowles, R.P., 1955, A study of variability in crested wheatgrass. Canad. J. Bot. 33: 534–546.

    Article  Google Scholar 

  41. Dewey, D.R., 1971, Reproduction in crested wheatgrass tri- ploids. Crop Sci. 11: 575–580.

    Article  Google Scholar 

  42. Dewey, D.R., 1977, A method of transferring genes from tetraploid to diploid crested wheatgrass. Crop Sci. 17: 803–805.

    Article  Google Scholar 

  43. Dewey, D.R., Pendse, P.C., 1968, Hybrids between Agropyron desertorum and induced-tetraploid Agropyron cristatum. Crop Sci. 8: 607–611.

    Article  Google Scholar 

  44. Bingham, E.T., Saunders, J.W., 1974, Chromosome manipulations in alfalfa. Scaling the cultivated tetraploid to seven ploidy levels. Crop Sci. 14: 474–477.

    Article  Google Scholar 

  45. Lesins, K., 1972,. Interspecific crosses involving alfalfa. VII. Medicago sativa X M. rhodopea. Canad. J. Genet. Cytol. 14: 221–226.

    Google Scholar 

  46. Quesenberry, K.H., Taylor, N.L., 1978, Interspecific hybri-dization in Trifolium L. Section Trifolium Zoh. III. Partially fertile hybrids of sarviense Hazsl. X 4x T. alpestre L. Crop Sci. 18: 551–556.

    Article  Google Scholar 

  47. Ellis, J.R., 1962, Fragaria-Potentilla intergeneric hybri-dization and evolution in Fragaria. Proc. Linn. Soc. London 173: 99–106.

    Article  Google Scholar 

  48. Livermore, J.R., Johnson, E.E., 1940, The effect of chromosome doubling on the crossability of Solanum chacoense, jamsii, and bulbocastarum with tuberosum. Amer. Potato J. 17: 170.

    Article  Google Scholar 

  49. Bernstrom, P., 1953, Increased crossability in Lamium after chromosome doubling. Hereditas 39: 241–246.

    Article  Google Scholar 

  50. Sears, E.R., 1956, The transfer of leaf-rust resistance from Aegilops umbellulata to wheat, pp. 1–22, in “Genetics in Plant Breeding,” Brookhaven Symposia in Biology No. 9, Brookhaven National Laboratory, Upton, New York.

    Google Scholar 

  51. Meyer, V., 1974, Interspecific cotton breeding. Econ. Bot. 28: 56–60.

    Article  Google Scholar 

  52. Buckner, R.C., Burrus, P.B., Bush, L.P., 1977, Registration of Kenhy tall fescue. Crop Sci. 17: 672–673.

    Article  Google Scholar 

  53. Cauderon, Y., 1979, Use of Agropyron species for wheat improvement, pp. 129–139, “Proc. Conf. Broadening Genetic Base of Crops,” Wageningen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Dewey, D.R. (1980). Some Applications and Misapplications of Induced Polyploidy to Plant Breeding. In: Lewis, W.H. (eds) Polyploidy. Basic Life Sciences, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3069-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3069-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3071-4

  • Online ISBN: 978-1-4613-3069-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics