Skip to main content

Role of Polyploidy in the Evolution of Fishes

  • Chapter
Polyploidy

Part of the book series: Basic Life Sciences ((BLSC,volume 13))

Abstract

Polyploidy is not generally believed to have played a major role in the evolution of animals. This view has been fostered principally by G. L. Stebbins and M. J. D. White, both of whom as early as the 1940’s advocated that Polyploidy at best has played a secondary role in evolution; neither of them has substantially altered this view in recent years (1,2). Some of the arguments against the importance of Polyploidy are: (a) that the large amount of gene duplication in polyploids dilutes the effects of new mutations so significant adaptive changes are unlikely, (b) that Polyploidy in animals is restricted mainly to asexual forms which are evolutionary dead ends, and (c) the number of polyploid animals relative to diploids is small.

I thank Mrs. Ellie DeCarli for typing the manuscript. The Poeciliopsis research is supported by the N.S.F.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Stebbins, G.L., 1977, “Process of Organic Evolution,” ed. 3, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  2. White, M.J.D., 1978, “Modes of Speciation,” W.H. Freeman, San Francisco.

    Google Scholar 

  3. Ohno, S., 1970, “Evolution by Gene Duplication,” Springer- Verlag,New York.

    Google Scholar 

  4. Ohno, S., 1974, “Animal Cytogenetics,” Vol. 4, Chordata 1. GerbrUder Borntraeger, Berlin.

    Google Scholar 

  5. Schwartz, F.J,, 1972, World Literature to Fish Hybrids with an Analysis by Family, Species and Hybrid. Gulf Coast Research Laboratory Museum, Ocean Springs, Mississippi.

    Google Scholar 

  6. Ohno, S., Atkin, N.B., 1966, Comparative DNA values and chromosome complements of eight species of fishes. Chromosoma 18: 455–466.

    Article  PubMed  CAS  Google Scholar 

  7. Hinegardner, R., 1968, Evolution of cellular DNA content in teleost fishes. Amer. Nat. 102: 517–523.

    Article  Google Scholar 

  8. Patterson, C., 1978, “Evolution,” Cornell University Press, Ithaca, New York.

    Google Scholar 

  9. Harrington, R.W., 1961, Oviparous hermaphroditic fish with interal self-fertilization. Science 134: 1749–1750.

    Article  PubMed  Google Scholar 

  10. Svärdson, G., 1945, Chromosome studies on Salmonidae. Report of the Institute of Freshwater Research. Drottningholm 23: 1–151.

    Google Scholar 

  11. Rees, H., 1964, The question of Polyploidy in the Salmonidae. Chromosoma 15: 275–279.

    Article  PubMed  CAS  Google Scholar 

  12. Taylor, K.M., 1967, The chromosomes of some lower chordates. Chromosoma 21: 181–188.

    Article  PubMed  CAS  Google Scholar 

  13. Greenwood, P.H., Rosen, D.E., Weitzman, S.H., Myers, G.S., 1966, Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bull. Amer. Mus. Nat. 131: 341–455.

    Google Scholar 

  14. Schultz, R.J., 1967, Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science 157: 1564–1567.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, T.R., Ebeling, A.W., 1968, Karyological evidence of female heterogamety in the mosquitofish Gambusia affinis ( Baird and Girad ). Copeia 1968: 70–75.

    Google Scholar 

  16. Roberts, F.L., 1964, A chromosome study of twenty species of Centrarchidae. J. Morph. 115: 401–418.

    Article  PubMed  CAS  Google Scholar 

  17. Ohno, S., Wolf, V., Atkin, N.B., 1968, Evolution from fish to mammals by gene duplication. Hereditas 59: 169–187.

    Article  PubMed  CAS  Google Scholar 

  18. Hinegardner, R., Rosen, D.E., 1972, Cellular DNA content and the evolution of teleostean fishes. Amer. Nat. 106: 621–644.

    Article  CAS  Google Scholar 

  19. Booke, H.E., 1968, Cytotaxonomic studies of the coregonine fishes of the Great Lakes, USA: DNA and karyotype analysis. J. Fish Res. Board Canada 25: 1667–1687.

    Article  Google Scholar 

  20. Simon, R.C., 1963, Chromosome morphology and species evolution in the five North American species of Pacific salmon (Oncorhynchus). J. Morph. 112: 77–97.

    Article  PubMed  CAS  Google Scholar 

  21. Simon, R., Dollar, A., 1963, Cytological aspects of speciation in two North American teleosts. Salmo gairdneri and Salmo clarki lewisi. Canad. J. Genet. Cytol. 5: 43–49.

    PubMed  CAS  Google Scholar 

  22. Viktorovsky, R.M., Chromosome sets of Coregonus peled and C. lavaretus baunti. Tsitologiya 6: 636–638.

    Google Scholar 

  23. Ohno, S., Muramoto, J., Klein, J., Atkin, N.B., 1969, Diploid- tetraploid relationship in clupeoid and salmonoid fish, pp. 139–147, in “Chromosomes Today,” Vol. I I, Darlington, C.D., Lewis, K.R. (eds.), Oliver and Boyd, Edinburgh.

    Google Scholar 

  24. Wolf, U., Engel, W., Faust, J., 1970, Zum Merchanismus der Diploidisierung in der Wirbeltierevolution: Koexistenz von tetrasomen disomen Genloci der Isozitrat-Dehydrogenasen bei der Regenbogenforelle (Salmo irideus). Humangenetik 9: 150–156.

    Article  PubMed  CAS  Google Scholar 

  25. Engel, W., Op’t Hof, J., Wolf, U., 1970, Genduplikation durch polyploide Evolution: die Isoenzyme der Sorbitdehydrogenese bei herings-und lacksartigen Fischen (Isospondyli), Humangenetik 9: 157–163.

    Article  PubMed  CAS  Google Scholar 

  26. Keyl, H.G., 1966, Increases of DNA in chromosomes, pp. 99–101, in “Chromosomes Today,” Vol. I, Darlington, C.D., Lewis, K.R. (eds.), Oliver and Boyd, Edinburgh.

    Google Scholar 

  27. Uyeno, T., Smith, G.R., 1972, Tetraploid origin of the karyotype of catostomid fishes. Science 175: 644–646.

    Article  PubMed  CAS  Google Scholar 

  28. Romer, A.S., 1966, “Vertebrate Paleontyology,” University of Chicago Press, Chicago.

    Google Scholar 

  29. Uyeno, T., Listed in Uyeno and Smith (Science 175: 644–646, 1972) as unpublished data.

    Google Scholar 

  30. Ohno, S., Muramoto, J., Christian, L., 1967, Diploid-tetraploid relationship among old world members of the fish family Cyprinidae. Chromosoma 23: 1–9.

    Article  Google Scholar 

  31. Muramoto, J., Ohno, S., Atkin, N.B., 1968, On the diploid state of the fish order Ostariophysi. Chromosoma 24: 59–66.

    Article  PubMed  CAS  Google Scholar 

  32. Wolf, U., Ritter, H., Atkin, N.B., Ohno, S., 1969, Polyploidization in the fish family Cyprinidae, order Cypriniformes. I. DNA-content and chromosome sets in various species of Cyprinidae. Humagenetik 7: 240–244.

    Article  CAS  Google Scholar 

  33. Klose, J., Wolf, U., Hitzeroth, H., Riter, H., Ohno, S., 1969, Polyploidization in the fish family Cyprinidae, order Cypriniformes. II. Duplication of the gene loci coding for lactate dehydrogenase (E.c.: 1.1.1.27) and 6-phosphogluconate dehydrogenase (E.c.: 1.1.1.44) in various species of Cyprinidae. Humagenetik 7: 245–250.

    Article  CAS  Google Scholar 

  34. Quiroz-Gutierrez, A., Ohno, S., 1970, The evidence of gene duplication for S-form NADP-linked isocitrate dehydrogenase in carp and goldfish. Biochem. Genet. 4: 98–99.

    Article  Google Scholar 

  35. Bender, K., Ohno, S., 1968, Duplication of the autosomally inherited 6-phosphogluconate dehydrogenase gene locus in tetraploid species of cyprinid fish. Biochem. Genet. 2: 101–107.

    Article  PubMed  CAS  Google Scholar 

  36. Kobayasi, H., Kawashima, Y., Takeuchi, N., 1970, Comparative chromosome studies in the genus Carassius, especially with a finding of Polyploidy in the ginbuna. Jap. J. Ichthyol. 17: 153–160.

    Google Scholar 

  37. Kobayasi, H., 1971, A cytological study on gynogenesis of the triploid ginbuna (Carassius auratus langsdorfii). Zool. Mag. 80: 316–322.

    Google Scholar 

  38. Kobayasi, H., Hashida, M., 1977, Morphological and cytological studies in back-cross hybrids of F1 fishes between the kinbuna (Carasslus auratus subsp.) and the crucian carp (Carassius carassius), Jap. Women’s Univ. J. ( Home Economics) Nol 24.

    Google Scholar 

  39. Kobaysi, H., 1977, Hybridization in Japanese funa, Carassius auratus. Proc. 5th Japan-Soviet Joint Symp. Aquaculture. Sept. 1976, Tokyo and Sapporo.

    Google Scholar 

  40. Liu, S., Sezaki, K., Hashimoto, K., Kobayasi, H., Nakamura, M., 1968, Simplified techniques for determination of Polyploidy in ginbuna Carassius auratus langsdorfi. Bull. Jap. Soc. Sci. Fisheries 44: 601–606.

    Article  Google Scholar 

  41. Golavinskaya, K.A., Romashov, D.D., Cherfas, N.B., 1965, The unisexual and bisexual forms of the silver goldfish (Carassius auratus gibelio Block). Vopr. Iktiologii 5: 614–629.

    Google Scholar 

  42. Lieder, U., 1959, Über die Eientwicklung bei männchenlosen Stämmen der Silberkarauche Carassius auratus gibelio (Block) (Vertebrata, Pisces). Biol. Zbl. 78: 284–291.

    Google Scholar 

  43. Cherfas, N.B., 1966, Natural triploidy in females of the unisexual form of silver carp [goldfish] (Carassius auratus gibelio Block). Genetika 5: 16–24.

    Google Scholar 

  44. Kobayasi, H., 1976, Comparative study of karayotypes in the small and large races of spinous loaches (Cobitus biwae). Zool. Mag. 85: 84–87.

    Google Scholar 

  45. Sezaki, K., Kobayasi, H., 1978, Comparison of erythrocyte size between diploid and tetraploid in spinois loach, Cobitis biwae. Bull. Jap. Soc. Sci. Fisheries 44: 851–854.

    Article  Google Scholar 

  46. Cimino, M.C., 1973, Karyotypes and erythrocyte sizes of some diploid and triploid fishes of the genus Poeciliopsis. J. Fish. Res. Board Canada 30: 1736–1737.

    Article  Google Scholar 

  47. Swarup, H., 1959, Effect of triploidy on the body size, general organization and cellular structure in Gasterosteus (L.). J. Genetics 56: 143–155.

    Article  Google Scholar 

  48. Purdom, C.E., 1973, Induced Polyploidy in plaice (Pleuronectes platessa) and its hybrid with the flounder (Platichythes flesus). Heredity 29: 11–24.

    Article  Google Scholar 

  49. Valenti, R.J., 1975, Induced Polyploidy in Tilapia aurea (Steindachner) by means of temperature shock treatment. J. Fish. Biol. 7: 519–528.

    Article  Google Scholar 

  50. Fankhauser, G., 1941, Cell size, organ and body size in triploid newts (Triturus viridescens). J. Morph. 68: 161–177.

    Article  Google Scholar 

  51. Nygren, A., Edlund, P., Hirsch, U., Aksgren, L., 1968, Cytological studies in perch (Perca fluviatilis L.), pike (Esox lucius L.), Pike-perch (Lucioperca lucioperca L.), and ruff (Acerina cernua L.). Hereditas 59: 518–524.

    Article  Google Scholar 

  52. Dingerkus, G., Howell, VÍ.M., 1976, Karyotypic analysis and evidence of tetraploidy in the North American paddlefish, Polyodon spathula. Science 194: 842–844.

    Article  PubMed  CAS  Google Scholar 

  53. Ohno, S., Muramoto, J., Stenius, C., Christian, L., Kittrell, W.A., 1969, Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26: 35–40.

    Article  PubMed  CAS  Google Scholar 

  54. Miller, R.R., Schultz, R.J., 1959, All-female strains of the teleost fishes of the genus Poeciliopsis. Science 130: 1656–1657.

    Article  PubMed  CAS  Google Scholar 

  55. Schultz, R.J., 1966, Hybridization experiments with an all- female fish of the genus Poeciliopsis. Biol. Bull. 130: 415–429.

    Article  Google Scholar 

  56. Schultz, R.J., 1969, Hybridization, unisexuality, and Polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Amer. Nat. 108: 605–619.

    Article  Google Scholar 

  57. Vrijenhoek, R.C., 1972, Genetic relationships of unisexual- hybrid fishes to their progenitors using lactate dehydrogenase isozymes as gene markers (Poeciliopsis, Poeciliidae). Amer. Nat. 106: 754–766.

    Article  Google Scholar 

  58. Vrijenhoek, R.C., Schultz, R.J., 1974, Evolution of a trihybrid unisexual fish (Poeciliopsis, Poeciliidae). Evolution 28: 306–319.

    Article  Google Scholar 

  59. Moore, W.S., 1976, Components of fitness in the unisexual fish Poeciliopsis monacha-occidentalis. Evolution 30: 564–578.

    Article  Google Scholar 

  60. Miller, R.R., 1960, Four new species of viviparous fishes, genus Poeciliopsis, from northwestern Mexico. Occasional Papers Mus. Zool., Univ. Michigan, No. 619. This publication lists one Rio Fuerte locality for monacha at Guirocoba; two others, one discovered by Miller at El Cajon is published under Vrijenhoek et al. 1978 and one discovered by J. Lanza is published under Bulger and Schultz 1979. The Rio Sinaloa site, discovered by Mller at Coronado, is unpublished.

    Google Scholar 

  61. Thibault, R.E., Schultz, R.J., 1978, Reproductive adaptations among viviparous fishes ( Cyprinodontiformes: Poeciliidae). Evolution 32: 320–333.

    Google Scholar 

  62. Schultz, R.J., 1977, Evolution and ecology of unisexual fishes, pp. 277 - 331, in “Evolutionary Biology,” Hecht, M.K., Steer, W.C., Wallace, B. (eds.). Vol. 10, Plenum, New York.

    Google Scholar 

  63. Cimino, M.C., 1972, Egg-production, polyploidization and evolution in a diploid all-female fish of the genus Poeciliopsis. Evolution 26: 294–306.

    Article  Google Scholar 

  64. Schultz, R.J., 1961, Reproductive mechanisms of unisexual and bisexual strains of the viviparous fish Poeciliopsis. Evolution 15: 302 - 325.

    Article  Google Scholar 

  65. Angus, R.A., Schultz, R.J., 1979, Clonal diversity in the unisexual fish Poeciliopsis monacha-lucida: a tissue graft analysis. Evolution 33: 27–40.

    Article  Google Scholar 

  66. Schultz, R.J., 1973, Origin and synthesis of a unisexual fish, pp. 207-211, in “Genetics and Mutagenesis of Fish,” Schröder, J.H. (ed.), Springer-Verlag, Berlin.

    Google Scholar 

  67. Schultz, R.J., 1961, Reproductive mechanism of unisexual and bisexual strains of the viviparous fish Poeciliopsis. 15: 302–325.

    Google Scholar 

  68. Moore, W.S., Miller, R.R., Schultz, R.J., 1970, Distribution adaptation and probable origin of an all-female form of Poeciliopsis (Pisces: Poeciliidae) in northwestern Mexico. Evolution 24: 806–812.

    Google Scholar 

  69. Schultz, R.J., 1971, Special adaptive problems associated with unisexual fishes. Amer. Zool. 11: 351–360.

    Google Scholar 

  70. Schultz, R.J., 1973, Unisexual fish: laboratory synthesis of a “species.” Science 179: 180–181.

    Article  PubMed  CAS  Google Scholar 

  71. Vrijenhoek, R.C., 1979, Factors affecting clonal diversity and coexistence, (in press).

    Google Scholar 

  72. Schultz, R.J., 1967, Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science 157: 1564–1567.

    Article  PubMed  CAS  Google Scholar 

  73. Schultz, R.J., (unpublished).

    Google Scholar 

  74. Cimino, M.C., 1974, The nuclear DNA content of diploid and triploid Poeciliopsis and other poeciliid fishes with reference to the evolution of unisexual forms. Chromosoma 47: 297–307.

    Article  PubMed  CAS  Google Scholar 

  75. Cimino, M.C., 1973, Meiosis in triploid all-female fish (Poeciliopsis, Poeciliidae). Science 175: 1484.

    Article  Google Scholar 

  76. Hubbs, C.L., Hubbs, L.C., 1932, Apparent parthenogenesis in nature, in a form of fish of hybrid origin. Science 76: 628–630.

    Article  PubMed  CAS  Google Scholar 

  77. Drewry, G.E., 1964, “Interactions between a bisexual fish species and its gynogenetic sexual parasite,” Bull. Texas Mem. Mus. No 8 Appendex 1, 67.

    Google Scholar 

  78. Balsano, J.S., Darnell, R.M., Abramoff, P., 1972, Electro- phoretic evidence of triploidy associated with populations of the gynogenetic teleost Poecilia formosa. Copeia 1972: 292–297.

    Article  Google Scholar 

  79. Rasch, E.M., Balsano, J.S., 1974, Biochemical and cytogenetic studies of Poecilia from eastern Mexico. II. Frequency, perpetuation, and probable origin of triploid genomes in females associated with Poecilia formosa. Rev. Biol. Trop. 21: 351–381; and personal communication.

    Google Scholar 

  80. Rasch, E.M., Manaco, P. J., Balsano, J.S., 1978, Identification of a new form of triploid hybrid fish by DNA-feulgen cytophotometry. J. Histochem. Cytochem. 26: 218 (abst.).

    Google Scholar 

  81. Tai, W., 1970, Multipolar meiosis in diploid crested wheatgrass, Agropyron cristatum. Amer. J. Bot. 57: 1160–1169.

    Article  Google Scholar 

  82. Purdom, C.E., 1976, Genetic techniques in flatfish culture. J. Fish. Res. Board Canada 33: 1088–1099.

    Article  Google Scholar 

  83. Stanley, J.G., Biggers, C.J., Schultz, D., 1976, Isozymes in androgenetic and gynogenetic white amur, gynogenetic carp, and carp-amur hybrids. J. Heredity 67: 129–134. (This article provides a good literature review on the subject of gynogenesis.)

    Google Scholar 

  84. Rasch, E.M., Darnell, R.M., Kallman, K.D., Abramoff. P., 1965, Cytophotometric evidence for triploidy in hybrids of the gynogenetic fish, Poecilia formosa. J. Exp. Zool. 160: 155–170.

    Article  PubMed  CAS  Google Scholar 

  85. Schultz, R.J., Kallman, K.D., 1968, Triploid hybrids between the all-female teleost Poecilia formosa and Poecilia sphenops. Nature 219: 280–282.

    Article  Google Scholar 

  86. Muller, H.J., 1925, Why Polyploidy is rarer in animals than in plants. Amer. Nat. 59: 346–353.

    Article  Google Scholar 

  87. Ferris, S.D., Whitt, G.S., 1977, Loss of duplicate gene expression after polyploidization. Nature 265: 258–260.

    Article  PubMed  CAS  Google Scholar 

  88. Cleland, R.E., 1936, Some aspects of the cytogenetics of Oenothera. Bot. Rev. 2: 316-318; Cleland, R.E., 1950, Studies on Oenothera cytogenetics and phylogeny. Indiana Univw Pubi., Sci. Ser. 16.

    Google Scholar 

  89. Schultz, R.J., Vrijenhoek, R.C., (unpublished).

    Google Scholar 

  90. Tunner, H., 19/3, Das Albumin und andere Bluteiweisse bei Rana ridibunda Pallas, Rana lessonae Camerano. Rana esculenta Linné und daren Hybriden. A. Zool. Syst. Evol. Forschung 11: 219–233.

    Google Scholar 

  91. Uzzell, T., Berger, L., 1975, Electrophoretic phenotypes of Rana ridibunda. Rana lessonae, and their hybridogénetic associate. Rana esculenta. Proc. Acad. Nat. Sci. (Philadelphia) 127: 13–24.

    Google Scholar 

  92. Uzzell, T., Günther, R., Berger, L., 1977, Rana esculenta and Rana ridibunda: a leaky hybridogenetic system? Proc. Acad. Nat. Sci. (Philadelphia) 128: 147–171.

    Google Scholar 

  93. Moav, R., Brody, T., Hulata, G., 1978, Genetic improvement of wild fish populations. Science 201: 1090–1094.

    Article  PubMed  CAS  Google Scholar 

  94. Donaldson, L.R., Menasveta, D., 1961, Selective breeding of Chinook salmon. Trans. Amer. Fish. Soc. 90: 160–164.

    Article  Google Scholar 

  95. Thibault, R.E., 1978, Ecological and evolutionary relationships among diploid and triploid unisexual fishes associated with the bisexual species, Poeciliopsis lucida (Cyprinodontiformes: Poeciliidae). Evolution 32: 613–623.

    Article  Google Scholar 

  96. Moore, W.S., 1976, Components of fitness in the unisexual fish Poeciliopsis monacha-occidnetalis. Evolution 30: 564–578.

    Article  Google Scholar 

  97. Kallman, K.D., 1962, Population genetics of the gynogenetic telost, Mollienesia formosa (Girard). Evolution 64: 497–504; Kallman, D.K., 1962, Gynogenesis in the telost, Mollienesia formosa (Girard) (with discussion of the detection of parthenogenesis in vertebrates by tissue transplantation). J. Genetics 58: 7–21; Kallman, K.D., 1964, Homozygosity in a gynogenetic fish - Poecilia formosa. Genetics 50: 260–261; Darnell, R.M., Lamb, E., Abramoff, P., 1967, Matroclinous inheritance and clonal structure of a Mexican population of the gynogenetic fish, Poecilia formosa. Evolution 21: 168–173.

    Article  Google Scholar 

  98. Moore, W.S., 1977, A histocompatability analysis of inheritance in the unisexual fish Poeciliopsis 2 monacha-lucida. Copeia 1977: 213–223; Vrijenhoek, R.C., Angus, R.A., Schultz, R.J., 1977, Variation and heterozygosity in sexual clonally reproducing populations. Evolution 31: 767–781; Vrijenhoek, R.C., Angus, R.A., Schultz, R.J., 1978, Variation and clonal structure in a unisexual fish. Amer. Nat. 112: 41–45.

    Article  Google Scholar 

  99. Angus, R.A., 1979, Geographical dispersal and clonal diversity in unisexual fish populations. Amer. Nat. (in press).

    Google Scholar 

  100. Vrijenhoek, R.C., 1978, Coexistence of clones in a heterogeneous environment. Science 199: 549–552.

    Article  PubMed  CAS  Google Scholar 

  101. Keegan-Rogers, V., doctoral research in progress.

    Google Scholar 

  102. Bulger, A.J., Schultz, 1979, Heterosis and interclonal variation in thermal tolerance in unisexual fishes. Evolution 33: (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Schultz, R.J. (1980). Role of Polyploidy in the Evolution of Fishes. In: Lewis, W.H. (eds) Polyploidy. Basic Life Sciences, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3069-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3069-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3071-4

  • Online ISBN: 978-1-4613-3069-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics