Skip to main content

Electron microscopy of the collagen fibril

  • Chapter
Ultrastructure of the Connective Tissue Matrix

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 3))

Abstract

Collagen is identified by those properties that stem from the predominantly triple-chain helical structure of its molecules. A prerequisite for the formation of this triple helix is a Gly-X-Y repeating tripeptide unit in the amino acid sequence of the three chains, where X and Y can be any amino acids but are often the imino acids proline and hydroxyproline. This sequence, with glycine in every third position and with an unusual abundance of hydroxyproline, forms the basis for the chemical identification of collagen (for review, see 1). An unambiguous physical identification is provided by X-ray diffraction; the helix parameters established by high-angle X-ray scattering are unique to collagen (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bornstein P, Traub W: The chemistry and biology of collagen. In: The Proteins, third ed., vol 4. Neurath H, Hill RL (eds), London and New York, Academic Press, 1979, pp 411–632.

    Google Scholar 

  2. Ramachandran GN, Ramakrishnan C: Molecular structure. In: Biochemistry of collagen. Ramachandran GN, Reddi AH (eds), New York and London, Plenum Press, 1976, pp 45–84.

    Google Scholar 

  3. Thomas JC, Fletcher GC: Dynamic light scattering from collagen solutions. II. Photon correlation study of the depolarized light. Bio-polymers 18: 1333–1352, 1979.

    CAS  Google Scholar 

  4. Gelman RA, Piez KA: Collagen fibril formation in vitro. A quasielas-tic light scattering study of early stages. J Biol Chem 255: 8098–9102, 1980.

    PubMed  CAS  Google Scholar 

  5. Fietzek PP, Kühn K: The primary structure of collagen. Int Rev Connect Tissue Res 7: 1–60, 1976.

    PubMed  CAS  Google Scholar 

  6. Tomlin SG: The structure of collagen fibres. In: Proceedings of the International Wool Textile Research Conference Australia, 1955, vol B. Crewther WG (ed), Melbourne, CSIRO, 1956, pp 178–192 (see Fig 2).

    Google Scholar 

  7. Hodge AJ, Schmitt FO: The charge profile of the tropocollagen macromolecule and the packing arrangement in native-type collagen fibrils. Proc Natl Acad Sci USA 46: 186–197, 1960.

    PubMed  CAS  Google Scholar 

  8. Kühn K, Zimmer E: Eigenschaften des Tropokollagen-Moleküls und deren Bedeutung für die Fibrillenbildung. Z Naturforsch 16b: 648–658, 1961.

    Google Scholar 

  9. Hodge AJ, Petruska JA: Recent studies with the electron microscope on ordered aggregates of the tropocollagen marcromolecule. In: Aspects of Protein Structure. Ramachandran GN (ed), London and New York, Academic Press, 1963, pp 289–300.

    Google Scholar 

  10. Miller A: Molecular packing in collagen fibrils. In: Biochemistry of Collagen. Ramachandran GN, Reddi AH (eds), New York and London, Plenum Press, 1976, pp 85–136.

    Google Scholar 

  11. Brodsky B, Eikenberry EF: Characterization of fibrous forms of collagen. Methods Enzymol 82: 127–174, 1982.

    PubMed  CAS  Google Scholar 

  12. Brodsky B, Eikenberry EF, Cassidy K: An unusual collagen periodicity in skin. Biochim Biophys Acta 621: 162–166, 1980.

    PubMed  CAS  Google Scholar 

  13. Stinson RH, Sweeny PR: Skin collagen has an unusual D-spacing Biochim Biophys Acta 621: 158–161, 1980.

    PubMed  CAS  Google Scholar 

  14. Parry DAD, Craig AS: Growth and development of collagen fibrils in connective tissue. In: Ultrastructure of the Connective Tissue Matrix. Ruggeri A, Motta PM (eds). The Hague, Martinus Nijhoff, 1984, pp 34–64.

    Google Scholar 

  15. Bruns RR, Hulmes DJS, Therrien SF, Gross J: Procollagen segment-long-spacing crystalities. Their role in collagen fibrillogenesis. Proc Natl Acad Sci USA 76: 313–317, 1979

    PubMed  CAS  Google Scholar 

  16. Miyahara M, Njieha FK, Prockop DJ: Formation of collagen fibrils in vitro by cleavage of procollagen with procollagen proteinases. J biol Chem 257: 8442–8448, 1982.

    PubMed  CAS  Google Scholar 

  17. Wood GC, Keech MK: The formation of fibrils from collagen solutions. I The effect of experimental conditions: kinetic and electron microscope studies. Biochem J 75: 588–598, 1960.

    PubMed  CAS  Google Scholar 

  18. Hall CE: Introduction to Electron Microscopy, First ed. New York and London, McGraw-Hill, 1953 (see Fig 12.12c on p. 410).

    Google Scholar 

  19. Tromans WJ. Horne RW, Gresham GA, Bailey AJ: Electron microscope studies on the structure of collagen fibrils by negative staining. Z Zeilforsch 58: 798–802, 1963.

    CAS  Google Scholar 

  20. Olsen BR: Electron microscope studies on collagen. I. Native collagen fibrils. Z Zeilforsch 59: 184–198, 1963.

    CAS  Google Scholar 

  21. Chapman JA: The staining pattern of collagen fibrils. I. An analysis of electron micrographs. Connect Tissue Res 2: 137–150, 1974.

    PubMed  CAS  Google Scholar 

  22. Bruns RR, Gross J: High-resolution analysis of the modified quarter-stagger model of the collagen fibril. Biopolymers 13: 931–941, 1974.

    PubMed  CAS  Google Scholar 

  23. Kühn K, Grassmann W, Hofmann U: Über den Aufbau den Kollagenfibrille aus Tropokolllagenmolekülen. Naturwissenschaften 47: 258–259, 1960.

    Google Scholar 

  24. Unwin PNT: Beef liver catalase structure. Interpretation of electron micrographs. J Mol Biol 98: 235–242, 1975

    PubMed  CAS  Google Scholar 

  25. Chapman JA, Hardcastle RA: The staining pattern of collagen fibrils. II. A comparison with patterns computer-generated from the amino acid sequence. Connect Tissue Res 2: 151–159, 1974.

    PubMed  CAS  Google Scholar 

  26. Meek KM, Chapman JA, Hardcastle RA: The staining pattern of collagen fibrils. Improved correlation with sequence data. J Biol Chem 254: 10710–10714, 1979.

    PubMed  CAS  Google Scholar 

  27. Huhnes DJS, Miller A, Parry DAD, Piez KA, Woodhead-Galloway J: Analysis of the primary structure of collagen for the origins of molecular packing. J Mol Biol 79: 137–148, 1973.

    Google Scholar 

  28. Chapman JA, Holmes DF, Meek KM, Rattew CJ: Electron-optical studies of collagen fibril assembly. In: Structural Aspects of Recognition and Assembly in Biological Macromolecules. Balaban M, Suss-man JL, Traub W, Yonath A (eds), Rehovot and Philadelphia, Yonath A (eds), 1981, 1, pp 387–401.

    Google Scholar 

  29. Tzaphlidou M, Chapman JA, Meek KM: A study of positive staining for electron microscopy using collagen as a model system. I. Staining by phosphotungstate and tungstate ions. Micron 13: 119–131, 1982.

    CAS  Google Scholar 

  30. Tzaphlidou M, Chapman JA, Al-Samman MH: A study of positive staining for electron microscopy using collagen as a model system. II. Staining by uranyl ions. Micron 13: 133–145, 1982.

    CAS  Google Scholar 

  31. Katayama E, Nonomura Y: Quantitative analysis of the mechanism of negative staining with native collagen fibrils and polar tropomyosin paracrystals. J Biochem 86: 1495–1509, 1979.

    PubMed  CAS  Google Scholar 

  32. Butler FMM:Electron Microscope Studies of Negatively Stained Collagen. MSc Thesis, University of Manchester, 1982.

    Google Scholar 

  33. Leibovich SJ; Weiss JB: Electron microscope studies of the effects of endo- and exopeptidase digestion on tropocollagen. A novel concept of the role of terminal regions in fibrillogenesis. Biochim Biophys Acta 214: 445–454, 1970.

    PubMed  CAS  Google Scholar 

  34. Ghosh SK, Mitra HP: Oblique banding pattern in collagen fibrils reconstituted in vitro after trypsin treatment. Biochim Biophys Acta 405: 340–346, 1975.

    PubMed  CAS  Google Scholar 

  35. Weiss JB: Enzymic degradation of collagen. Int Rev Connect Tissue Res 7: 101–157, 1976.

    PubMed  CAS  Google Scholar 

  36. Comper WD, Veis A: The mechanism of nucleation for in vitro collagen fibril formation. Biopolymers 16: 2113–2131, 1977.

    PubMed  CAS  Google Scholar 

  37. Comper WD, Veis A: Characterization of nuclei in in vitro collagen fibril formation. Biopolymers 16: 2133–2142, 1977.

    PubMed  CAS  Google Scholar 

  38. Gelman RA, Poppke DC, Piez KA: Collagen fibril formation in vitro. The role of the non-helical terminal regions. J Biol Chem 254: 11741–11745, 1979.

    PubMed  CAS  Google Scholar 

  39. Helseth DL, Veis A: Collagen self-assembly in vitro. Differentiating specific telopeptide-dependent interactions using selective enzyme modification and the addition of free amino telopeptide. J Biol Chem 256: 7118–7128, 1981.

    PubMed  CAS  Google Scholar 

  40. Bensusan HB, Scanu A: Fiber formation from solutions of collagen. II. The role of tyrosyl residues. J Am Chem Soc 82: 4990–4995, 1960.

    CAS  Google Scholar 

  41. Haworth RA, Chapman JA: A study of the growth of normal and iodinated collagen fibrils in vitro using electron microscope auto-radiography. Biopolymers 16: 1895–1906, 1977.

    PubMed  CAS  Google Scholar 

  42. Capaldi MJ, Chapman JA: The C-terminal extra-helical peptide of type I collagen and its role in fibrillogenesis in vitro. Biopolymers 21: 2291–2313, 1982.

    PubMed  CAS  Google Scholar 

  43. Bruns RR, Gross J: Band pattern of the segment-long-spacing form of collagen. Its use in the analysis of primary structure. Biochemistry 12: 808–815, 1973.

    PubMed  CAS  Google Scholar 

  44. Hulmes DJS, Miller A, White SW, Doyle BB: Interpretation of the meridional X-ray diffraction pattern from collagen fibres in terms of the known amino acid sequence. J Mol Biol 110: 643–666, 1977.

    PubMed  CAS  Google Scholar 

  45. Helseth DL, Lechner JH, Veis A: Role of the amino-terminal extra helical region of type I collagen in directing the 4D overlap in fibrillogenesis. Biopolymers 18: 3005–3014, 1979.

    CAS  Google Scholar 

  46. Weiss JB: Preparation of segment-long-spacing collagen. In: The Methodology of Connective Tissue Research. Hall DA (ed), Oxford, Joynson-Bruwers, 1976, pp 73–80.

    Google Scholar 

  47. Kühn K: Segment-long-spacing crystallites, a powerful tool in collagen research. Collagen Rel Res 2: 61–80, 1982.

    Google Scholar 

  48. Chapman JA, Armitage PM: An analysis of fibrous long spacing forms of collagen. Connect Tissue Res 1: 31–37, 1972.

    CAS  Google Scholar 

  49. Bowden JK, Chapman JA: The precipitation of segmented-long-spacing collagen by inorganic triphospate and perdisulphate ions. Connect Tissue Res 1: 109–112, 1972.

    CAS  Google Scholar 

  50. Doyle BB, Hukins DWL, Hulmes DJS, Miller A, Woodhead-Galloway J: Collagen polymorphism. Its origins in the amino acid sequence. J Mol Biol 91: 79–99 1975.

    PubMed  CAS  Google Scholar 

  51. Beer M, Wiggins JW, Tukel D, Stoeckert CJ: Biological structure determination through atomic microscopy. Chemica Scripta 14: 263–266, 1978/79.

    Google Scholar 

  52. Fernandez-Madrid F, Noonan S, Riddle J, Karvonen R, Sasaki D: Intracellular processing of procollagen induced by the action of col-chicine. J Anat 130: 229–241, 1980.

    PubMed  CAS  Google Scholar 

  53. Pérez-Tamayo R: The occurrence and significance of SLS crystallites in vivo. Connect Tissue Res 1: 55–60, 1972.

    Google Scholar 

  54. Imura S. Tanaka S, Takase B: Intracytoplasmic segment long spacing fibrils in chondrosarcoma. J Electron Microsc (Tokyo) 24: 87–95, 1974.

    Google Scholar 

  55. Weinstock M, Leblond CP: Synthesis, migration, and release of precursor collagen by ondotoblasts as visualized by radioautography after [3H]-proline administration. J Cell Biol 60: 92–127, 1974.

    PubMed  CAS  Google Scholar 

  56. Chapman JA: Preparation of fibrous long spacing collagen. In: The Methodology of Connective Tissue Research. Hall DA (ed), Oxford, Joynson-Bruwers, 1976, pp 63–72.

    Google Scholar 

  57. Kajikawa K, Nakanishi I, Yamamura T: The effect of collagenase on the formation of fibrous long spacing collagen aggregates. Lab Invest 43: 410–417, 1980.

    PubMed  CAS  Google Scholar 

  58. Bard JBL, Chapman JA: Polymorphism in collagen fibrils precipitated at low pH. Nature (Lond) 219: 1279–1280, 1968.

    CAS  Google Scholar 

  59. Bruns RR:Supramolecular structure of polymorphic collagen fibrils. J Cell Biol 68: 521–538, 1976.

    PubMed  CAS  Google Scholar 

  60. Williams BR, Gelman RA, Poppke DC, Piez KA: Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem 253: 6578–6585, 1978.

    PubMed  CAS  Google Scholar 

  61. Bruns RR, Trelstad RL, Gross J: Cartilage collagen. A staggered substructure in reconstituted fibrils. Science 181: 269–271, 1973.

    PubMed  CAS  Google Scholar 

  62. Doyle BB, Hulmes DJS, Miller A; Parry DAD, Piez KA, Wood-head-Galloway J. A D-periodic narrow filament in collagen. Proc R Soc Lond B186: 67–74, 1974.

    PubMed  CAS  Google Scholar 

  63. Wood GC: The precipitation of collagen fibrils from solution. Int Rev Connect Tissue Res 2: 1–31, 1964.

    PubMed  CAS  Google Scholar 

  64. Wood GC: The formation of fibrils from collagen solutions. 2. A mechanism of collagen fibril formation. Bioch J 75: 598–605, 1960.

    CAS  Google Scholar 

  65. Cassel JM, Mandelkern L, Roberts DE: The kinetics of the heat precipitation of collagen. J Am Leather Chem Assoc 57: 556–575, 1962.

    CAS  Google Scholar 

  66. Gelman RA, Williams BR, Piez KA: Collagen fibril formation. Evidence for a multi-step process. J Biol Chem 254: 180–186, 1979.

    PubMed  CAS  Google Scholar 

  67. Brennan M, Davison PF: Role of aldehydes in collagen fibrillogenesis in vitro. Biopolymers 19: 1861–1873, 1980.

    PubMed  CAS  Google Scholar 

  68. Silver FH, Trelstad RL: Type I collagen in solution. Structure and properties of fibril fragments. J Biol Chem 255: 9427–9433, 1980.

    PubMed  CAS  Google Scholar 

  69. Silver FH: Type I collagen fibrillogenesis in vitro. Additional evidence for the assembly mechanism. J Biol Chem 256: 4973–4977, 1981.

    PubMed  CAS  Google Scholar 

  70. Trelstad RL, Hayashi K, Gross J: Collagen fibrillogenesis. Intermediate aggregates and suprafibrillar order. Proc Natl Acad Sci USA 73: 4027–4031, 1976.

    PubMed  CAS  Google Scholar 

  71. Bard JBL, Chapman JA: Diameters of collagen fibrils grown in vitro. Nature (Lond) 246: 83–84, 1973.

    CAS  Google Scholar 

  72. Holmes DF, Chapman JA: Axial mass distributions of collagen fibrils grown in vitro. Results for the end regions of early fibrils. Biochem Biophys Res Commun 87: 993–999, 1979.

    PubMed  CAS  Google Scholar 

  73. Capaldi MJ, Holmes DF, Chapman JA: Collagen fibrillogenesis in vitro. Effects of precipitating conditions (in preparation).

    Google Scholar 

  74. Fitton Jackson S, Smith RH: Studies on the biosynthesis of collagen. I. The growth of fowl osteoblasts and the formation of collagen in tissue culture. J Biophys Biochem Cytol 3: 897–912, 1957.

    CAS  Google Scholar 

  75. Goldberg B, Green H: An analysis of collagen secretion by established mouse fibroblast lines. J Cell Biol 22: 227–258, 1964.

    PubMed  CAS  Google Scholar 

  76. Prockop DJ, Kivirikko KI, Tuderman L Guzman NA: The biosynthesis of collagen and its disorders. N Engl Med 301:13–23, 77–85, 1979.

    CAS  Google Scholar 

  77. Lapière CM, Nusgens B, Pierard G, Hermanns JF: The involvement of procollagen in spatially orientated fibrillogenesis. In: Dynamics of Connective Tissue Macromolecules. Burleigh PMC, Poole AR (eds), Amsterdam North Holland, 1975, pp 33–50.

    Google Scholar 

  78. Wick G, Olsen BR, Timpl R: Immunohistologic analysis of fetal and dermatosparactic calf and sheep skin with antisera to procollagen type I. Lab Invest 39: 151–156, 1978.

    PubMed  CAS  Google Scholar 

  79. Fleischmajer R, Timpl R, Tuderman L, Raisher L, Weistner M, Perlish JS, Graves PN: Ultrastructural demonstration of extension aminopropeptides of type I and III collagens in human skin. Proc Natl Acad Sci USA 78: 7360–7364, 1981.

    PubMed  CAS  Google Scholar 

  80. Lapière CM, Nusgens B: Polymerisation of procollagen in vitro Biochim Biophys Acta 342: 237–246, 1974.

    Google Scholar 

  81. Cho M-I, Garant PR: Sequential events in the formation of collagen secretion granules with special reference to the development of segment-long-spacing aggregates. Anat Rec 199: 309–320, 1981.

    PubMed  CAS  Google Scholar 

  82. Wright GM, Leblond CP: Immunohistochemical localisation of procollagen. III. Type I procollagen antigenicity in osteoblasts and pre-bone (osteoid). J Histochem Cytochem 29: 791–804, 1981.

    PubMed  CAS  Google Scholar 

  83. Hulmes DJS, Bruns RR, Gross J: On the state of aggregation of newly secreted procollagen. Proc Natl Acad Sci USA 80: 388–392, 1983.

    PubMed  CAS  Google Scholar 

  84. North ACT, Cowan PM, Randall JT: Structural units in collagen fibrils. Nature (Lond) 174: 1142–1143, 1954.

    CAS  Google Scholar 

  85. Miller A, Wray JS: Molecular packing in collagen. Nature (Lond) 230: 437–439, 1971.

    CAS  Google Scholar 

  86. Miller A, Parry DAD: Structure and packing of microfibrils in collagen. J Mol Biol 75: 441–447, 1973.

    PubMed  CAS  Google Scholar 

  87. Huhnes DJS, Miller A: Quasi-hexagonal molecular packing in collagen fibrils. Nature (Lond) 282: 878–880, 1979.

    Google Scholar 

  88. Smith JW: Molecular patterns in native collagen. Nature (Lond) 219: 157–158, 1968.

    CAS  Google Scholar 

  89. Veis A, Anesey J, Mussell S: A limiting microfibril model for the three-dimensional arrangement within collagen fibres. Nature (Lond) 215: 931–934, 1967.

    CAS  Google Scholar 

  90. Miller A, Tocchetti D: Calculated X-ray diffraction pattern from a quasi-hexagonal model for the molecular arrangement in collagen. Int J Biol Macromol 3: 9–18, 1981.

    CAS  Google Scholar 

  91. Trus BL, Piez KA: Compressed microfibril models of the native collagen fibril. Nature (Lond) 286: 300–301, 1980.

    CAS  Google Scholar 

  92. Fraser RDB, MacRae TP: Unit cell and molecular connectivity in tendon collagen. Int J Biol Macromol 3: 193–200, 1981.

    CAS  Google Scholar 

  93. Bailey AJ, Light ND, Atkins EDT: Chemical cross-linking restrictions on the models for the molecular organization of the collagen fibre. Nature (Lond) 288: 408–410, 1980.

    CAS  Google Scholar 

  94. Hulmes DJS, Miller A: Molecular packing in collagen. Nature (Lond) 293: 239–240, 1981.

    CAS  Google Scholar 

  95. Piez KA, Trus BL: A new model for packing of type-I collagen molecules in the native fibril. Biosci Rep 1: 801–810, 1981.

    PubMed  CAS  Google Scholar 

  96. Jesior J-C, Miller A, Berthet-Colominas C: Crystalline three-dimensional packing is a general characteristic of type I collagen fibrils. FEBS Lett 113: 238–240, 1980.

    PubMed  CAS  Google Scholar 

  97. Eikenberry EF, Brodsky B: X-ray diffraction of reconstituted collagen fibers. J Mol Biol 144: 397–404, 1980.

    PubMed  CAS  Google Scholar 

  98. Woodhead-Galloway J, Machin PA: Modern theories of liquids and the diffuse equatorial X-ray scattering from collagen. Acta Cryst A32: 368 - 372, 1976.

    Google Scholar 

  99. Hukins DWL, Woodhead-Galloway J: Collagen fibrils as examples of smectic-A biological fibres. Mol Cryst Liq Cryst 41: 33–39, 1977.

    CAS  Google Scholar 

  100. Wendorff JH: Scattering in liquid crystalline polymer systems. In: Liquid Crystalline Order in Polymers. Blumstein A (ed), London and New York, Academic Press, 1978, pp 1–41.

    Google Scholar 

  101. Veis A, Miller A, Leibovich SJ, Traub W: The limiting collagen microfibril. The minimum structure demonstrating native axial periodicity. Biochim Biophys Acta 576: 88–98, 1979.

    PubMed  CAS  Google Scholar 

  102. Squire JM, Freundlich A: Direct observation of a transverse periodicity in collagen fibrils. Nature (Lond) 288: 410–413, 1980.

    CAS  Google Scholar 

  103. Brodsky (Doyle) B, Hukins DWL, Hulmes DJS, Miller A, White S, Woodhead-Galloway J: Low angle X-ray diffraction studies on stained rat tail tendons. Biochim Biophys Acta 535: 25–32, 1978.

    Google Scholar 

  104. Hulmes DJS, Jesior J-C, Miller A, Berthet-Colominas C, Wolff C: Electron microscopy shows periodic structure in collagen fibril cross-sections. Proc Natl Acad Sci USA 78: 3567–3571, 1981.

    PubMed  CAS  Google Scholar 

  105. Rayns DG: Collagen from frozen factured glycerinated beef heart. J Ultrastruct Res 48: 59–66, 1974.

    PubMed  CAS  Google Scholar 

  106. Stolinski C, Breathnach AS: Freeze-facture replication and surface sublimation of frozen collagen fibrils. J Cell Sci 23: 325–334, 1977.

    PubMed  CAS  Google Scholar 

  107. Ruggeri A, Benazzo F, Reale E, Collagen fibrils with straight and helicoidal microfibrils: a freeze-fracture and thin-section study. J Ultrastruct Res 68: 101–108, 1979.

    PubMed  CAS  Google Scholar 

  108. Scott JE, Orford CR: Dermatan sulphate-rich proteoglycan associates with rat tail tendon collagen at the d band in the gap region. Biochem J 197: 213–216, 1981.

    PubMed  CAS  Google Scholar 

  109. Jelinski LW, Torchia DA: Investigation of labelled amino acid side-chain motion in collagen using 13C nuclear magnetic resonance. J Mol Biol. 138: 255–272, 1980.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Boston, The Hague, Dordrecht, Lancaster

About this chapter

Cite this chapter

Chapman, J.A., Hulmes, D.J.S. (1984). Electron microscopy of the collagen fibril. In: Ruggeri, A., Motta, P.M. (eds) Ultrastructure of the Connective Tissue Matrix. Electron Microscopy in Biology and Medicine, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2831-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2831-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9789-5

  • Online ISBN: 978-1-4613-2831-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics