Skip to main content

The Orientation of Fish and the Vertical Stratification at Fine- and Micro-Structure Scales

  • Chapter
Mechanisms of Migration in Fishes

Part of the book series: NATO Conference Series ((MARS,volume 14))

Abstract

Some characteristic properties of vertical fine structure and microstructure in natural waters are surveyed. Ubiquitous thermal microstructure, by its anisotrophy due to shear in the fine-structure gradient layers, is a property that could be used by fishes to orient relative to the local current shear. The geostrophic shear causes a bias in the probability of breaking of internal waves, depending on the direction of wave travel relative to the shear. By this mechanism the direction of major ocean currents may be mirrored in local microstructure. The influence of the fine-structure field on the character of large-scale dispersion of an odorous substance leads to a hypothesized mechanism for olfactory orientation. Some results from ultrasonic tracking of Atlantic salmon and European eels are given to show that fish do perceive and react to vertical fine structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Armi, L. 1978. Some evidence for boundary mixing in the deep ocean. Journal of Geophysical Research 83:1971–1979.

    Article  Google Scholar 

  • Armi, L., and E. D’Asaro. 1980. Flow structures of the benthic ocean. Journal of Geophysical Research 85: 469–484.

    Article  Google Scholar 

  • Arnold, G.P. 1974. Rheotropism in fishes. Biological Reviews of the Cambridge Philosophical Society 49: 515–576.

    Article  PubMed  CAS  Google Scholar 

  • Arnold, G.P. 1981. Movements of fish in relation to water currents. Pages 55–79 in D.J. Aidley, editor. Animal migration. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Bardach, J.E., and R.G. Björklund. 1957. The temperature sensitivity of some American freshwater fishes. American Naturalist 91: 233–251.

    Article  Google Scholar 

  • Bell, T.H. 1975. Topographically generated internal waves in the open ocean. Journal of Geophysical Research 80: 320–327.

    Article  Google Scholar 

  • Booker, J.R., and F.P. Bretherton. 1967. The critical layer for internal gravity waves in shear flow. Journal of Fluid Mechanics 27: 513–539.

    Article  Google Scholar 

  • Bull, HO . 1936. Studies on conditioned responses in fishes. Part VII. Temperature perception in teleosts. Journal of the Marine Biological Association of the United Kingdom 21: 1–27.

    Article  Google Scholar 

  • Caldwell, D.R., J.M. Brubaker, and V.T. Neal. 1977. Thermal micro- structure on a lake slope. Limnology and Oceanography 23: 372–374.

    Article  Google Scholar 

  • Carmack, EC., PD. Killworth. 1978. Formation and interleaving of abyssal water masses off Wilkes Land, Antarctica. Deep-Sea Research 25: 357–370.

    Google Scholar 

  • Cooper, L.H.N. 1967. Stratification in the deep ocean. Science Progress 55: 73–90.

    CAS  Google Scholar 

  • Elliot, A.J., M.R. Howe, and R.I. Tait. 1974. The lateral coherence of a system of thermohaline layers in the deep ocean. Deep-Sea Research 21: 95–107.

    Google Scholar 

  • Elliot, J.A., and N.S. Oakey. 1975. Horizontal coherence of temperature microstructure. Journal of Physical Oceanography 5: 506–515.

    Article  Google Scholar 

  • Ewart, T.E., and W.P. Bendiner. 1981. An observation of the horizontal and vertical diffusion of a passive tracer in the deep ocean. Journal of Geophysical Research 86: 10974–10982.

    Article  Google Scholar 

  • Federov, K.N. 1976. The thermohaline finestructure of the ocean. Pergamon Press, Oxford, England.

    Google Scholar 

  • Gargett, A.E. 1976. An investigation of the occurrence of oceanic turbulence with respect to finestructure. Journal of Physical Oceanography 6: 139–156.

    Article  Google Scholar 

  • Gargett, A.E., and R.W. Schmitt. 1982. Observations of salt-fingers in the central waters of the Eastern North Pacific. Journal of Geophysical Research 87: 8017–8029.

    Article  Google Scholar 

  • Garrett, C., and W.H. Munk. 1979 Internal waves in the ocean. Annual Review of Fluid Mechanics 11: 339–369.

    Article  Google Scholar 

  • Gibson, C.H. 1982a. Alternative interpretations for microstructure patches in the thermocline. Journal of Physical Oceanography 12: 374–383.

    Article  Google Scholar 

  • Gibson, C.H. 1982b. On the scaling of vertical temperature gradient spectra. Journal of Geophysical Research 87: 8031–8038.

    Article  Google Scholar 

  • Gill, A.E. 1981. Homogeneous intrusions in a rotating stratified fluid. Journal of Fluid Mechanics 103: 275–295.

    Article  CAS  Google Scholar 

  • Gregg, M.C. 1975. Microstructure and intrusions in the California Current. Journal of Physical Oceanography 5: 253–278.

    Article  Google Scholar 

  • Gregg, M.C. 1980. The three-dimensional mapping of a small thermohaline intrusion. Journal of Physical Oceanography 10: 1468–1492.

    Article  Google Scholar 

  • Gregg, M.C., and M.G. Briscoe. 1979. Internal waves, finestructure, microstructure and mixing in the ocean. Reviews of Geophysics and Space Physics 17: 1524–1548.

    Article  Google Scholar 

  • Harden Jones, F.R. 1968. Fish migration. Arnold, London, England.

    Google Scholar 

  • Hasselman, K. 1970. Wave-driven inertial oscillations. Geophysical Fluid Dynamics 1: 463–502.

    Article  Google Scholar 

  • Horne, E.P.W. 1978. Interleaving at the subsurface front in the slope water off Nova Scotia. Journal of Geophysical Research 83: 3659–3671.

    Article  Google Scholar 

  • Ivey, G.N., and G.M. Corcos. 1982. Boundary mixing in a stratified fluid. Journal of Fluid Mechanics 121: 1–26.

    Article  Google Scholar 

  • Kullenberg, G. 1974. An experimental and theoretical investigation of the turbulent diffusion in the upper layer of the sea. Københavns Universitet Institut for Fysisk Oceanografi Report 25: 1–212.

    Google Scholar 

  • Kullenberg, G., C.R. Murthy, and H. Westerberg. 1973. An experimental study of diffusion characteristics in the thermocline and hypolimnion regions of Lake Ontario. Pages 774–790 in Proceedings 16th Conference on Great Lakes Research International Assoc¬iation of Great Lakes Research. Ann Arbor, Michigan, USA.

    Google Scholar 

  • Linden, P.F. 1974. Salt-fingers in a steady shear flow. Geophysical Fluid Dynamics 6: 1–27.

    Article  Google Scholar 

  • Linden, P.F. 1979. Mixing in stratified fluids. Geophysical and Astrophysical Fluid Dynamics 13: 3–23.

    Article  Google Scholar 

  • McEwan, A.D., and R.M. Robinson. 1975. Parametric instabilities of internal waves. Journal of Fluid Mechanics 67: 667–687.

    Article  Google Scholar 

  • Munk, W. 1981. Internal waves and small-scale processes. Pages 264–291 in B.A. Warren and C. Wunsch, editors. Evolution of physical oceanography. Massachusetts Institute of Technology Press, Cambridge, Massachusetts, USA.

    Google Scholar 

  • Neshyba, S., V.T. Neal, and W. Denner. 1971. Temperature and conductivity measurements under Ice Island T-3. Journal of Geophysical Research 76: 8107–8120.

    Article  Google Scholar 

  • Orlanski, I., and K. Bryan. 1969. Formation of the thermocline step structure by large-amplitude internal gravity waves. Journal of Geophysical Research 74: 6975–6993.

    Article  Google Scholar 

  • Phillips, O.M. 1977. The dynamics of the upper ocean. Second edition. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Rommel, S.A., and J.D. McCleave. 1973. Prediction of oceanic electric fields in relation to fish migration. Journal du Conseil Conseil International pour 1’Exploration de la Mer 35: 27–31.

    Google Scholar 

  • Ruddick, B. 1980. Critical layers and the Garrett-Munk spectrum. Journal of Marine Research 38: 135–145.

    Google Scholar 

  • Sanford, T.B., R.G. Drever, and J.H. Dunlap. 1978. A velocity profiler based on the principles of geomagnetic induction. Deep-Sea Research 25: 183–210.

    Article  Google Scholar 

  • Simpson, J.H. 1975. Observations of small scale vertical shear in the ocean. Deep-Sea Research 22: 619–627.

    Google Scholar 

  • Stern, M.E. 1960. The “salt-fountain” and thermohaline convection. Tellus 12: 172–175.

    Article  Google Scholar 

  • Stommel, H., and K.N. Federov. 1967. Small-scale structure in temperature and salinity near Timor and Mindanao. Tellus 19: 306–325.

    Article  Google Scholar 

  • Strasburg, D.W. 1961. Diving behaviour of Hawaiian skip-jack tuna. Journal du Conseil Conseil International pour 1’Exploration de la Mer 26: 223–229.

    Google Scholar 

  • Thorpe, S.A. 1973. Experiments on instability and turbulence in a stably stratified shear flow. Journal of Fluid Mechanics 61: 731–751.

    Article  Google Scholar 

  • Turner, J.S. 1981. Small-scale mixing processes. Pages 236–262 in B.A. Warren and C. Wunsch, editors. Evolution of physical oceanography. Massachusetts Institute of Technology Press, Cambridge, Massachusetts, USA.

    Google Scholar 

  • Van Leer, J.C., and C.G. Rooth. 1975. Shear observations in the deep thermocline. Deep-Sea Research 22: 831–836.

    Google Scholar 

  • Veronis, G. 1965. A finite amplitude instability in thermohaline convection. Journal of Marine Research 23: 1–17.

    Google Scholar 

  • Voorhis, A.D., D.C. Webb, and R.C. Millard. 1976. Current structure and mixing in the shelf/slope water front south of New England. Journal of Geophysical Research 81: 3695–3708.

    Article  Google Scholar 

  • Westerberg, H . 1982. Ultrasonic tracking of Atlantic salmon: I Movements in coastal regions, II Swimming depth and temperature stratification. Institute of Freshwater Research Drottningholm Report 60: 81–120.

    Google Scholar 

  • Williams, A.J. 1981. The role of double diffusion in a Gulf Stream frontal intrusion. Journal of Geophysical Research 86: 1917–1928.

    Article  Google Scholar 

  • Woods, J.D. 1968. Wave-induced shear instability in the summer thermocline. Journal of Fluid Mechanics 32: 791–800.

    Article  Google Scholar 

  • Woods, J.D., and R.L. Wiley. 1972. Billow turbulence and ocean microstructure. Deep-Sea Research 19:87–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Westerberg, H. (1984). The Orientation of Fish and the Vertical Stratification at Fine- and Micro-Structure Scales. In: McCleave, J.D., Arnold, G.P., Dodson, J.J., Neill, W.H. (eds) Mechanisms of Migration in Fishes. NATO Conference Series, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2763-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2763-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9708-6

  • Online ISBN: 978-1-4613-2763-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics