Skip to main content

The Cellular Defense System of Drosophila melanogaster

  • Chapter
Insect Ultrastructure

Abstract

Although insects lack adaptive immune systems endowed with memory elements and finely tuned discriminatory powers such as those found in the vertebrates, they do possess internal defense mechanisms for combating foreign materials (Salt, 1970). Among these are the cellular responses of phagocytosis and encapsulation used to resist parasitic and microbial infections. These processes do not involve opsonization of foreign materials (Scott, 1971; Anderson et al., 1973), so it appears that the insect hemocyte surfaces themselves must play the crucial role in discriminating nonself from self. This being the case, analysis of insect defense reactions requires study of hemocyte surface receptor sites on which extracellular cues operate as well as investigation of the body’s own tissue surfaces to which the hemocytes remain neutral.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. S., Holmes, B., and Good, R. A., 1973, In vitrobactericidal capacity of Blaberus craniiferhemocytes, J. Invertebr. Pathology 22: 127 – 135.

    CAS  Google Scholar 

  • Carton, Y., and Kitano, H., 1981, Evolutionary relationships to parasitism by seven species of the Drosophila melanogastersubgroup, Biol. J. Linn. Soc. 16: 227 – 241.

    Article  Google Scholar 

  • Carton, Y., and Kitano, H., 1981, Evolutionary relationships to parasitism by seven species of the Drosophila melanogastersubgroup, Biol. J. Linn. Soc. 16: 227 – 241.

    Article  Google Scholar 

  • Castiglioni, M. C., 1957, Le cellule dell-emolinfa di Drosophila melanogasterin relazione al genotipo e alia produzione degli pseudotumori, Atti III Riun, A.G.I. Ric. Sci. Suppl. 27: 51 – 58.

    Google Scholar 

  • El Shatoury, H. E., 1955, The structure of the lymph glands of Drosophilalarvae, Wilhelm Roux Arch. Dev. Biol. 147: 489 – 495.

    Article  Google Scholar 

  • Grégoire, C. H., and Goffinet, G., 1979, Controversies about the coagulocyte. In Insect Hemocytes, edited by A. P. Gupta, pp. 189 – 229, Cambridge University Press, London.

    Chapter  Google Scholar 

  • Grimstone, A. V., Rotherham, S., and Salt, G., 1967, An electron-microscope study of capsule formation by insect blood cells, J. Cell Sci. 2: 281 – 292.

    PubMed  CAS  Google Scholar 

  • Gupta, A. P. (ed.), 1979, Hemocyte types: Their structures, synonymies, interrelationships, and taxonomic significance. In Insect Hemocytes, pp. 85 – 127, Cambridge University Press, London.

    Google Scholar 

  • Hammarström, S., Hellström, U., Dillner, M.-L., Perlmann, P., Perlmann, H., Axelsson, B., and Robertsson, E.-S., 1978, Fractionation of lymphocytes on insolubilized Helix pomatiaA hemagglutinin and wheat germ agglutinin. In Affinity Chromatography, edited by O., Hoffmann-Ostenhof, pp. 273 – 286, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Irlé, C., Piguet, P.-F., and Vassalli, P., 1978, In vitromaturation of immature thymocytes into immunocompetent T cells in the absence of direct thymic influence, J. Exp. Med. 148: 32 – 45.

    Article  PubMed  Google Scholar 

  • Lalanne, J. L., Bregegere, F., Delarbe, C., Abastado, J. P., Gachelin, G., and Kourilsky, P., 1982, Comparison of nucleotide sequences of mRNAs belonging to the mouse H-2 multigene family, Nucleic Acids Res. 10: 1039 – 1049.

    Article  PubMed  CAS  Google Scholar 

  • Lemeunier, F., and Ashburner, M., 1976, Relationships within the melanogasterspecies subgroup of the genus Drosophila(Sophophora). II. Phylogenetic relationships between six species based upon polytene chromosome banding sequences. Proc. R. Soc. London Ser. B 193: 275 – 294.

    Article  CAS  Google Scholar 

  • Maclntyre, R. J., 1966a, The genetics of an acid phosphatase in D. melanogasterand D. simulans, Genetics 53: 461 – 474.

    Google Scholar 

  • Maclntyre, R. J., 1966b, Locus of the structural gene for 3rd larval instar alkaline phosphatase, Drosophila Inf. Serv. 41: 62.

    Google Scholar 

  • Monson, J. M., Natzle, J., Friedman, J., and McCarthy, B. J., 1982, Expression and novel structure of a collagen gene in Drosophila, Proc. Natl. Acad. Sci. USA 79: 1761 – 1765.

    Article  PubMed  CAS  Google Scholar 

  • Nappi, A. J., and Streams, F. A., 1969, Haemocytic reactions of Drosophila melanogasterto the parasites of Pseudeucoila mellipesand P. bochei, J. Insect Physiol. 15: 1551 – 1566.

    Article  Google Scholar 

  • Natzle, J. E., Monson, J. M., and McCarthy, B. J., 1982, Cytogenetic location and expression of collagen-like genes in Drosophila, Nature 296: 368 – 371.

    Article  PubMed  CAS  Google Scholar 

  • Oftedal, P., 1952, Histology and histogenesis of Drosophila tumors, Science 116: 392 – 393.

    Article  PubMed  CAS  Google Scholar 

  • Peeples, E., Geisler, A., Whitcraft, C. J., and Oliver, C. P., 1969, Activity of phenol oxidases at the puparium formation stage in development of nineteen lozenge mutants of Drosophila melanogaster, Biochem. Genet. 3: 563 – 569.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe, N. A., and Rowley, A. F., 1979, Role of hemocytes in defense against biological agents. In Insect Hemocytes, edited by A. P. Gupta, pp. 331 – 414, Cambridge University Press, London.

    Chapter  Google Scholar 

  • Reisner, Y., Linker-Israeli, M., and Sharon, N., 1976, Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin, Cell. Immunol. 25: 129 – 134.

    CAS  Google Scholar 

  • Rizki, R. M., and Rizki, T. M., 1974, Basement membrane abnormalities in melanotic tumor formation, Experientia 30: 543 – 546.

    Article  PubMed  CAS  Google Scholar 

  • Rizki, R. M., and Rizki, T. M., 1979, Cell interactions in the differentiation of a melanotic tumor in Drosophila, Differentiation 12: 167 – 178.

    Article  PubMed  CAS  Google Scholar 

  • Rizki, R. M., and Rizki, T. M., 1980, Hemocyte responses to implanted tissues in Drosophila melanogasterlarvae, Wilhelm Roux Arch. Dev. Biol. 189: 207 – 213.

    Article  Google Scholar 

  • Rizki, R. M., Rizki, T. M., Bebbington, C. R., and Roberts, D. B., 1983, Drosophilalarval fat body surfaces: Changes in transplant compatibility during development, Wilhelm Roux Arch. Dev. Biol. 192: 1 – 7.

    Article  Google Scholar 

  • Rizki, T. M., 1956, Blood cells of Drosophilaas related to metamorphosis. In Physiology of Insect Development, edited by F. L. Campbell, pp. 91 – 94, University of Chicago Press, Chicago.

    Google Scholar 

  • Rizki, T. M., 1957a, Alterations in the haemocyte population of Drosophila melanogaster, J. Morphol. 100: 437 – 458.

    Article  Google Scholar 

  • Rizki, T. M., 1957b, Tumor formation in relation to metamorphosis in Drosophila melanogaster, J. Morphol. 100: 459 – 472.

    Article  Google Scholar 

  • Rizki, T. M., 1960, Melanotic tumor formation in Drosophila, J. Morphol. 106: 147 – 158.

    Article  PubMed  CAS  Google Scholar 

  • Rizki, T. M., 1962, Experimental analysis of hemocyte morphology in insects, Am. Zool. 2: 247 – 256.

    Google Scholar 

  • Rizki, T. M., 1969, Hemocyte encapsulation of streptococci in Drosophila, J. Invertebr. Pathol. 12: 339 – 343.

    Article  Google Scholar 

  • Rizki, T. M., 1978, The circulatory system and associated cells and tissues. In The Genetics and Biology of Drosophila, vol. 2b, edited by M. Ashburner and T. R. F. Wright, pp. 397 – 452, Academic Press, New York.

    Google Scholar 

  • Rizki, T. M., and Rizki, R. M., 1959, Functional significance of the crystal cells in the larva of Drosophila melanogaster, J. Biophys. Biochem. Cytol. 5: 235 – 240.

    Article  PubMed  CAS  Google Scholar 

  • Rizki, T. M., and Rizki, R. M., 1978, The role of hemocytes in melanotic tumor formation. In Comparative Pathobiology, vol. 4, edited by L. A. Bulla, Jr., and T. C. Cheng, pp. 85 – 96, Plenum Press, New York.

    Google Scholar 

  • Rizki, T. M., and Rizki, R. M., 1980a, Developmental analysis of a temperature-sensitive mutant in Drosophila melanogaster, Wilhelm Roux Arch. Dev. Biol. 189: 197 – 206.

    Article  Google Scholar 

  • Rizki, T. M., and Rizki, R. M., 1980b, The direction of evolution in the Drosophila melanogasterspecies subgroup based on functional analysis of the crystal cells, J. Exp. Zool. 212: 323 – 328.

    Article  Google Scholar 

  • Rizki, T. M., and Rizki, R. M., 1980c, Properties of the larval hemocytes of Drosophila melanogaster, Experientia 36: 1223 – 1226.

    Article  Google Scholar 

  • Rizki, T. M., and Rizki, R. M., 1981a, Alleles of lzas suppressors of the Bc-phene in Drosophila melanogaster, Genetics 97: s90.

    Google Scholar 

  • Rizki, T. M., and Rizki, R. M., 1981b, Genetics of tumor-Win Drosophila melanogaster, J. Hered. 72: 78 – 80.

    CAS  Google Scholar 

  • Rizki, T. M., and Rizki, R. M., 1983a, Basement membrane polarizes lectin, binding sites of Drosophila larval fat body cells, Nature 30: 340 – 342.

    Article  Google Scholar 

  • Rizki, T. M., and Rizki, R. M., 1983b, Blood cell surface changes in melanotic tumor mutants of Drosophila, Science 220: 73 – 75.

    Article  CAS  Google Scholar 

  • Rizki, T. M., Rizki, R. M., Allard, L. F., and Bigelow, W. C., 1976, Micromanipulation of tissues and cells of the Drosophilalarva in the SEM, Scanning Electron Microscopy/1976II, edited by O. Johari and R. P. Becker, pp. 611–618, IIT Research Institute, Chicago.

    Google Scholar 

  • Rizki, T. M., Rizki, R. M., and Grell, E. H., 1980, A mutant affecting the crystal cells in Drosophila melanogaster, Wilhelm Roux Arch. Dev. Biol. 188: 91 – 99.

    Article  Google Scholar 

  • Robertson, C. W., 1936, The metamorphosis of Drosophila melanogasterincluding an accurately timed account of the principal morphological changes, J. Morphol. 59: 351 – 399.

    Article  Google Scholar 

  • Röhrborn, G., 1961, Drosophilatumors and the structure of larval lymph glands, Experientia 17: 507.

    Article  Google Scholar 

  • Salt, G., 1970, The Cellular Defense Reactions of Insects, Cambridge University Press, London.

    Book  Google Scholar 

  • Sang, J. H., and Burnet, B., 1963, Physiological genetics of melanotic tumors in Drosophila melanogaster. I. The effects of nutrient balance on tumor penetrance in the tu Kstrain, Genetics 48: 235 – 253.

    PubMed  CAS  Google Scholar 

  • Scott, M. T., 1971, Recognition of foreignness in invertebrates. II. In vitrostudies of cockroach phagocytic haemocytes, Immunology 21: 817 – 828.

    PubMed  CAS  Google Scholar 

  • Shalev, A., Pla, M., Ginsburger-Vogel, T., Echalier, G., Lögdberg, L, Björck, L., Colombani, J., and Segal, S., 1983, Evidence for β2-microglobulin-like and H-2-like antigenic determinants in Drosophila, 130: 297 – 302.

    CAS  Google Scholar 

  • Shrestha, R., and Gateff, E., 1982, Ultrastructure and cytochemistry of the cell types in the larval hematopoietic organs and hemolymph of Drosophila melanogaster, Dev. Growth Differ. 24: 65 – 82.

    Article  Google Scholar 

  • Sparrow, J. C., 1978, Melanotic “tumours” In The Genetics and Biology of Drosophila, vol. 2b, edited by M. Ashburner and T. R. F. Wright, pp. 277–313, Academic Press, New York.

    Google Scholar 

  • Srdic, Z., and Reinhardt, C., 1980, Histolysis initiated by “lymph gland” cells of Drosophila, Science 207: 1375 – 1377.

    Google Scholar 

  • Stark, M. B., and Marshall, A. K., 1931, The blood-forming organ of the larva of Drosophila melanogaster, J. Am. Inst. Homeopathy 23: 1204 – 1206.

    Google Scholar 

  • Throckmorton, L. H., 1975, The phylogeny, ecology, and geography of Drosophila. In Handbook of Genetics, vol. 3, edited by R. C. King, pp. 421 – 469, Plenum Press, New York.

    Google Scholar 

  • Tsacas, L., and Bächli, G., 1981, Drosophila sechellia, N. SP., huitième espèce du sous-groupe melanogaster des lies Séchelles, Rev. Fr. Entomol. 3: 146 – 163.

    Google Scholar 

  • Walker, I., 1959, Die Abwehrreaktion des Wirtes Drosophila melanogastergegen die zoophage Cynipide Pseudeucoila bocheiWeld, Rev. Suisse Zool. 66: 569 – 632.

    Google Scholar 

  • Wilson, L. P., King, R. C., and Lowry, J. L., 1955, Studies on the tu-Wstrain of D. melanogaster, Growth 19: 215 – 244.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Rizki, T.M., Rizki, R.M. (1984). The Cellular Defense System of Drosophila melanogaster . In: King, R.C., Akai, H. (eds) Insect Ultrastructure. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2715-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2715-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9685-0

  • Online ISBN: 978-1-4613-2715-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics