Skip to main content

Electrophysiological Evidence for Increased Calcium-Mediated Potassium Conductance by Low-Dose Sedative-Hypnotic Drugs

  • Chapter
Calcium in Biological Systems

Abstract

In this chapter evidence is presented favoring the hypothesis that low-dose actions (i. e., mild sedation and anxiolysis) of ethanol, a water-soluble benzodiazepine (midazolam), and pentobarbital are due to enhanced calcium-mediated potassium conductance (Ca-gK). This hypothesis, which developed from results of electrophysiological experiments recording intracellularly from CA1 and CA3 cells in mammalian hippocampal slices, centers around the fact that injection of Ca2+ into excitable cells induces a membrane hyperpolarization by a selective increase in gK [20,24,30,32,33]. Physiologically, Ca-gK is usually triggered by a depolarization-induced influx of Ca2+ from the surrounding medium. On the other hand, persistently raised intracellular free Ca2+ concentration, [Ca2+]i, will actually reduce the depolarization-induced inward Ca2+ current [14,16,20,24,37,43]. However, it was shown in voltage-clamped dorid neurons that the intraneuronal free [Ca2+]i and not the amount of the Ca2+ current is related to the degree of activation of the Ca-gK [15]. Therefore, Ca-gK could be increased even though the inward Ca2+ current is reduced if the source of increased [Ca2+]i is intracellular. The exact way that Ca-gK is activated by a depolarizing current pulse or by injected Ca2+ is unclear. We have used the size of the Ca2+ spikes evoked in neurons perfused with tetrodotoxin (TTX), which blocks Na+-dependent action potentials, as an indirect monitor of the free [Ca2+]i.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alger, B. E.; Nicoll, R. A. Feed-forward dendritic inhibition in rat hippocampal pyramidal cells studied invito. J. Physiol (London) 328: 105 – 123, 1982.

    CAS  Google Scholar 

  2. Alger, B. E.; Nicoll, R. A. Pharmacological evidence for two kinds of GAB A receptor on rat hippocampal pyramidal cells studied in-vitro. J. Physiol (London) 328: 125 – 141, 1982.

    CAS  Google Scholar 

  3. Baker, P. F.; Schlaepfer, W. W. Uptake and binding of calcium by axoplasm isolated from giant axons of LOLIGO and MYXICOLA. J. Physiol. (London) 276: 103 – 125, 1978.

    CAS  Google Scholar 

  4. Blaustein, M. P.; McGraw, C. F.; Somlyo, A. V.; Schweitzer, E. S. How is the cytoplasmic calcium concentration controlled in nerve terminals? J. Physiol. (Paris) 76:459—470, 1980.

    Google Scholar 

  5. Blaustein, M. P.; Nelson, M. T. Sodium-calcium exchange: Its role in the regulation of cell calcium. In: Calcium Transport across Biological Membranes, E. Carafoli, ed., New York, Academic Press, 1982, pp.217–236.

    Google Scholar 

  6. Braestrup, C.; Squires, R. F. Specific benzodiazepine receptors in rat brain characterized by high-affinity [3H]diazepam-binding. Proc. Natl. Acad. Sci. USA 74:3805–3809, 1977.

    Google Scholar 

  7. Brinley, F. J.,Jr. Regulation of intracellular calcium in squid ionsFed. Proc 39: 2778–2782, 1980.

    PubMed  CAS  Google Scholar 

  8. Carlen, P. L.; Corrigall, W. A. Ethanol tolerance measured electrophysiologically in hippocampal slices and not in neuromuscular junctions from chronically ethanol-fed ratsNeurosci. Lett 17: 95–100, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Carlen, P. L.; Gurevich, N., Durand, D. Ethanol in low doses augments calcium mediated mechanisms measured intracellularly in hippocampal neuronsScience 215: 306 – 309, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Carlen, P. L.; Gurevich, N.; Pole, P. Low dose benzodiazepine neuronal inhibition: Enhanced Ca++ -mediated K+ conductanceBrain Res 271: 358 –364, 1983.

    Article  CAS  Google Scholar 

  11. Carlen, P. L.; Gurevich, N.; Pole, P. The excitatory effects of the specific benzodiazepine antagonist Ro-14-7437 measured intracellularly in CA1 cellsBrain Res 271: 115–119, 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Dingledine, R.; Dodd, J,; Kelly, J. S. The in-vitro brain slice as a useful neurophysiological preparation for intracellular recordingJ. Neurosci. Methods 2: 323–362, 1980.

    CAS  Google Scholar 

  13. Durand, D.; Corrigall, W. A.; Kujtan, P.; Carlen, P. L. Effects of low concentrations of ethanol on CA1 hippocampal neurons in vitroCan. J. Physiol. Pharmacol 59: 979–984, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Eckert, R.; Ewald, D. Residual calcium ions depress activation of calcium dependent currentScience 216: 730–733, 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Eckert, R.; Tillotson, D. Potassium activation associated with intraneuronal free calciumScience 200: 437–439, 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Eckert, R.; Tillotson, D. L. Calcium-mediated inactivation of the calcium conductance in caesium-loaded giant neurones of Aplysia californicaJ. Physiol. (London) 314: 265–280, 1981.

    CAS  Google Scholar 

  17. Garattini, S.; Mussini, E.; Marucci, F.; Guaitani, A. Metabolic studies on benzodiazepines in various animal species. In: The Benzodiazepines, S. Garattini, E. Mussini, and L. O. Randall, eds., New York, Raven Press, 1973, pp. 75–97.

    Google Scholar 

  18. Goldstein, D. B.; Chin, J. H. Interaction of ethanol with biological membranesFed. Proc 40: 2073–2076, 1981.

    PubMed  CAS  Google Scholar 

  19. Gustafasson, B.; Wigstrom, H. Evidence for two types of afterhyperpolarizations in CA1 pyramidal cells in the hippocampusBrain Res 206: 462–468, 1981.

    Article  Google Scholar 

  20. Hagiwara, S.; Byerly, L. Calcium ChannelsAnnu. Rev. Neurosci 4: 69–125, 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Harris, R. A. Psychoactive drugs as antagonists of actions of calcium. In: Calcium Antagonists, G. Weiss, ed., Bethesda, American Physiological Society, pp. 223–231.

    Google Scholar 

  22. Harris, R. A. Ethanol and pentobarbital inhibition of intrasynaptosomal sequestration of calciumBiochem. Pharmacol 30: 3209–3215, 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Heyer, E. J.; MacDonald, R. L. Barbiturate reduction of calcium-dependent action potentials: Correlation with anesthetic actionBrain Res 236: 157–171, 1982.

    Article  PubMed  CAS  Google Scholar 

  24. Hofmeier, G.; Lux, H. D. The time courses of intracellular free calcium and related electrical effects after injection of CaCl2 into neurons of the snail, Helix pomatia. Pfluegers Arch 391: 242–217, 1981.

    Article  CAS  Google Scholar 

  25. Hotson, J. R.; Prince, D. A. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neuronsJ. Neurophysiol 43: 409–419, 1980.

    PubMed  CAS  Google Scholar 

  26. Jahnsen, H.; Laursen, A. M. The effects of benzodiazepine on the hyperpolarizing and the depolarizing responses of hippocampal cells to GABABrain Res 207:214-217, 1981.

    Article  PubMed  CAS  Google Scholar 

  27. Kanto, J.; Kangas, L.; Siirotola, T. Cerebrospinal-fluid concentrations of diazepam and its metabolites in manActa. Pharmacol. Toxicol 36: 328–334, 1975.

    Article  CAS  Google Scholar 

  28. Klotz, U. Effect of age on levels of diazepam in plasma and brain of ratsNaunyn-Schmiedeberg’s Arch. Pharmacol 307: 167–169, 1979.

    Article  CAS  Google Scholar 

  29. Krnjevic, K. Excitable membranes and anesthetics. In: Cellular Biology and Toxicity of Anesthetics, B. R. Fink, ed., Baltimore, Williams,Wilkins, 1972, pp. 3–9.

    Google Scholar 

  30. Krnjevic, K.; Lisiewicz, A. Injections of calcium-ions into spinal motoneuronesJ. Physiol. (London) 225: 363–390, 1972.

    CAS  Google Scholar 

  31. Lehninger, A. L. Mitochondria and calcium ion in transportBiochem. J 119: 129–138, 1970.

    PubMed  CAS  Google Scholar 

  32. Meech, R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cellsComp. Biochem. Physiol. A 42: 493–499, 1972.

    Article  CAS  Google Scholar 

  33. Meech, R. W. The sensitivity of Helix aspersa neurones to injected calcium ions. J. Physiol. (London) 237: 259 – 277, 1974.

    CAS  Google Scholar 

  34. Nestoros, J. N. Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science 209: 708 – 710, 1980.

    Article  PubMed  CAS  Google Scholar 

  35. Nicoll, R. A.; Alger, B. E. Synaptic excitation may activate a calcium dependent potassium conductance in hippocampal pyramidal cells. Science 212: 957 – 959, 1981.

    Article  PubMed  CAS  Google Scholar 

  36. Nicoll, R. A.; Madison, D. V. General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science 217: 1055 – 1057, 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Plant, T. D.; Standen, N. B. Calcium current inactivation in identified neurones of Helix aspersa. J. Physiol. (London) 321: 273 – 285, 1981.

    CAS  Google Scholar 

  38. Schatzmann, H. J.; Burgin; H. Calcium in human red blood cells. Ann. N.Y. Acad. Sci. 307: 125 – 147, 1978.

    Article  PubMed  CAS  Google Scholar 

  39. Schwartzkroin, P. A.; Prince, D. A. Effects of TEA on hippocampal neurons. Brain Res. 185: 169 – 181, 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Schwartzkroin, P. A.; Slawsky, M. Probable calcium spikes in hippocampal neurons. Brain Res. 135:157–161, 1977.

    Google Scholar 

  41. Seeman, P.: Chau, M.; Goldberg, M.; Sauks, T.; Sax, L. The binding of Ca2+ to the cell membrane by volatile anesthetics (alcohols, acetone, ether) which induce sensitization of nerve or muscle. Biochim. Biophys. Acta 225: 185 – 193, 1971.

    Article  PubMed  CAS  Google Scholar 

  42. Shefner, S. A.; Chiu, T. H.; Anderson, E. G. Intracellular measurements of ethanol effects on rat locus coeruleus neurons in a brain slice preparation. Soc. Neurosci. Abstr. 8: 651, 1982.

    Google Scholar 

  43. Standen, N. B. Ca channel inactivation by intracellular Ca injection into Helix neurones. Nature (London) 293: 158 – 159, 1981.

    Article  CAS  Google Scholar 

  44. Yamamoto, H. A.; Harris, R. A. Calcium-dependent efflux and ethanol intoxication: Studies of human red blood cells and rodent brain synaptosomes. Eur. J. Pharmacol. 88: 357 – 363, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Carlen, P.L., Gurevich, N., O’Beirne, M. (1985). Electrophysiological Evidence for Increased Calcium-Mediated Potassium Conductance by Low-Dose Sedative-Hypnotic Drugs. In: Rubin, R.P., Weiss, G.B., Putney, J.W. (eds) Calcium in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2377-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2377-8_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9453-5

  • Online ISBN: 978-1-4613-2377-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics