Skip to main content

Experimental Techniques for Cross-Section Measurements

  • Chapter
Electron-Molecule Collisions

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Instrumentation and experimental techniques for electron-impact crosssection measurements have improved significantly in recent years. This progress has been motivated by the need for electron collision data in connection with the modeling of many practical systems (lasers, plasma devices, planetary ionospheres, chemical systems under the influence of particle bombardment, and so on) and has been aided by advances in vacuum techniques, charged and neutral particle beam technology, progress in electron energy analysis and detection, and computer developments. On one hand the reliability and accuracy of crosssection measurement techniques have reached a stage where a large body of highly accurate (few %) cross sections can now be determined with moderate efforts. On the other hand refinements and sophistication in the experimental techniques make it possible to study and distinguish individual processes which have been averaged over in previous measurements (e.g., individual vibrational— rotational transitions, competing and overlapping dissociation and ionization processes, magnetic sublevel excitation amplitudes, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C. Ramsauer, Über den Wirkungsquerschnitt der Gasmoleküle gegenüber longsamen Electronen. I. Fortsetzung, Ann. Phys. (Leipzig) 66, 546–558 (1921).

    CAS  Google Scholar 

  2. D.E. Golden and H.W. Bandel, Absolute total electron-helium scattering cross sections for low electron energies, Phys. Rev. 138, A14–21 (1965).

    CAS  Google Scholar 

  3. H.S.W. Massey, E.H.S. Burhop, and H.B. Gilbody, Electronic and Ionic Impact Phenomena, 2nd ed., Vols. 1 and 2, Garenden Press, Oxford (1969).

    Google Scholar 

  4. C.E. Kuyatt, Electron-atom interactions, in Methods of Experimental Physics (L. Marion, ed.), Vol. 7A, pp. 1–43, Academic Press, New York (1968).

    Google Scholar 

  5. D.E. Golden, N.F. Lane, A. Temkin, and E. Gerjuoy, Low-energy electron-molecule scattering experiments and the theory of rotational excitation, Rev. Mod. Phys. 43, 642–678 (1971).

    CAS  Google Scholar 

  6. B. Bederson and L.J. Kieffer, Total electron-atom collision cross sections at low energies-A critical review, Rev. Mod. Phys. 43, 601–641 (1971).

    CAS  Google Scholar 

  7. H.J. Blaauw, F.J. de Heer, R.W. Wagenaar, and D. Barends, Total cross sections for electron scattering from N2 and He, J. Phys. B 10, L299–L303 (1977).

    CAS  Google Scholar 

  8. R.W. Wagenaar, Total cross sections for electron-atom scattering and their use in the field of dispersion relations. FOM Institute, Amsterdam, Report FOMNR.43.948 (1978).

    Google Scholar 

  9. B. Bederson, Crossed beam electron-neutral experiments, in Methods of Experimental Physics (L. Marion, ed.), Vol. 7A, pp. 67–95, Academic Press, New York (1968).

    Google Scholar 

  10. K. Rubin, B. Bederson, M. Goldstein, and R.E. Collins, Electron alkali-metal inelastic recoil experiments and spin analysis: Experimental method and the small-angle behavior of the 4 2 S 1/2 →4 2 P 1/2, 3/2 excitation in potassium, Phys. Rev. 182, 201–214 (1969).

    CAS  Google Scholar 

  11. R.E. Collins, B. Bederson, and M. Goldstein, Differential spin exchange and the elastic scattering of low-energy electrons by potassium, Phys. Rev. A 3, 1976–1987 (1971).

    Google Scholar 

  12. J.E. Land and W.R. Raith, High-resolution measurement of resonances in e-O2 scattering by electron time-of-flight spectroscopy, Phys. Rev. A 9, 1592–1602 (1974).

    CAS  Google Scholar 

  13. R.E. Kennerly and R.A. Bonham, Electron-helium absolute total scattering crosssections from 0.5 to 50 eV, Phys. Rev. A 17, 1844–1854 (1978).

    CAS  Google Scholar 

  14. D.W.O. Heddle, The measurement of optical excitation functions, in Methods of Experimental Physics (L. Marton, ed.), Vol. 7A, pp. 43–67, Academic Press, New York (1968).

    Google Scholar 

  15. D.W.O. Heddle and R.G.W. Keesing, Measurement of electron excitation functions, in Advances in Atomic and Molecular Physics (D.R. Bates and I. Estermann, eds.), Vol. 4, pp. 267–297, Academic Press, New York (1968).

    Google Scholar 

  16. O.B. Shpenik, V.V. Sovter, A.N. Zavilopulo, I.P. Zapesochny, and E.E. Kontrosh, Investigation of resonances in the total cross sections for excitation of mercury atoms by slow monoenergetic electrons, Zh. Eksp. Teor. Fiz. 69, 48–58 (1975).

    CAS  Google Scholar 

  17. O.B. Shpenik, Resonances observed on the optical excitation functions, in Electronic and Atomic Collisions (G. Watel, ed.), pp. 99–112. North-Holland, Amsterdam (1978).

    Google Scholar 

  18. G.J. Schulz, Measurement of atomic and molecular excitation by a trapped electron method, Phys. Rev. 112, 150–154 (1958).

    CAS  Google Scholar 

  19. H.S.W. Massey, E.H.S. Burhop, and H.B. Gilbody, Electronic and Ionic Impact Phenomena, 2nd ed., Vol. I, pp. 284–288, Clarendon Press, Oxford (1969).

    Google Scholar 

  20. D.A. Golden and A. Zecca, An energy modulated high energy resolution electron spectrometer, Rev. Sci.Instrum. 42, 210–216 (1971).

    CAS  Google Scholar 

  21. F.W.E. Knopp, H.H. Brongersma, and A.J.H. Boerboom, A new method to study molecules by electron impact spectroscopy, Chem. Phys. Lett. 5, 450–452 (1970).

    Google Scholar 

  22. J.S. Townsend and V.A. Baily, The motion of electrons in gases, Phil. Mag. 42, 873–891 (1921).

    CAS  Google Scholar 

  23. J.S. Townsend and V.A. Baily, Motion of electrons in helium, Phil. Mag. 46, 657–664 (1923).

    CAS  Google Scholar 

  24. L.G.H. Huxley and R.W. Crompton, The Diffusion and Drift of Electrons in Gases, John Wiley and Sons, New York (1974).

    Google Scholar 

  25. L.S. Frost and A.V. Phelps, Rotational excitation and momentum transfer cross sections for electrons in H2 and N2 from transport coefficients, Phys. Rev. 127, 1621–1633 (1962).

    CAS  Google Scholar 

  26. L. Ferrari, Inelastic collisions and velocity distribution function of electrons in a gas in an electric field, Physica 85C, 161–179 (1977).

    Google Scholar 

  27. D.C. Cartwright, Rate coefficients and inelastic momentum-transfer cross sections for electronic excitation of N2 by electrons, J. Appl. Phys. 49, 3855–3862 (1978).

    CAS  Google Scholar 

  28. S.L. Lin, R.E. Robson, and E.A. Mason, Jr., Moment theory of electron drift and diffusion in neutral gases in an electrostatic field, J. Chem. Phys. 71, 3483–3498 (1979).

    CAS  Google Scholar 

  29. D.W.O. Heddle, Tables of focal properties of three-element electrostatic cylinder lenses, University of Colorado, JILA Report No. 104 (October 1970).

    Google Scholar 

  30. E. Harting and F.H. Read, Electrostatic Lenses, Elsevier, Amsterdam (1976).

    Google Scholar 

  31. A. Chutjian, Geometries and focal properties of two electron-lens systems useful in low-energy electron or ion scattering, Rev. Sci. Instrum. 50, 347–355 (1979).

    CAS  Google Scholar 

  32. CE. Kuyatt, Lectures on electron optics, NBS (1970), unpublished.

    Google Scholar 

  33. D. DiChio, S.V. Natali, C.E. Kuyatt, and A. Galejs, Use of matrices to represent electron lenses. Matrices for the two-tube electrostatic lens, Rev. Sci. Instrum. 45, 566–569 (1974).

    Google Scholar 

  34. A.L. Hughes and V. Rojansky, On the analysis of electronic velocities by electrostatic means, Phys. Rev. 34, 284–290 (1929).

    CAS  Google Scholar 

  35. A.L. Hughes and J.H. McMillen, Refocusing of electron paths in a radial electrostatic field, Phys. Rev. 34, 291–295 (1929).

    Google Scholar 

  36. P. Marmet and L. Kerwin, An improved electrostatic electron selector, Can. J. Phys. 38, 787–796 (1960).

    Google Scholar 

  37. H. Ehrhardt, L. Langhans, and F. Linder, Die differentiellen Anregungsfunktionen der n = 2 Zustände von Helium, Z. Phys. 214, 179–194 (1968).

    CAS  Google Scholar 

  38. R.I. Hall, G. Joyez, J. Mazeau, J. Reinhardt, and C. Schermann, Electron impact differential and integral cross sections for excitation of the n = 2 states of helium at 29.2, 39.2, and 48.2 eV, J. Phys. (Paris) 34, 827–843 (1973).

    CAS  Google Scholar 

  39. E.M. Purcell, The focusing of charged particles by a spherical condenser, Phys. Rev. 54, 818–826 (1938).

    CAS  Google Scholar 

  40. C.E. Kuyatt and J.A. Simpson, Electron monochromator design, Rev. Sci. Instrum. 38, 103–111 (1967).

    CAS  Google Scholar 

  41. J.N.H. Brunt, F.H. Read, and G.C. King, The realization of high-energy resolution using the hemispherical electrostatic energy selector in electron-impact spectrometry, J. Phys. E 10, 134–139 (1977).

    CAS  Google Scholar 

  42. D.F. Brewer, W.R. Newell, and A.C.H. Smith, A co-axial cone electrostatic velocity analyzer I. Analysis of electron optical properties, J. Phys. E 13, 114–122 (1980); II. Construction and use of high-resolution electron scattering experiments, J. Phys. 13, 123-127 (1980).

    CAS  Google Scholar 

  43. K.D. Sevier, Low-Energy Electron Spectrometry, Wiley-Interscience. New York (1972); W. Steckelmacher, Energy analyzers for charged particle beams, J. Phys. E 6, 1061–1071 (1973).

    Google Scholar 

  44. F.H. Read, J. Comer, R.E. Imhof, J.N.H. Brunt, and E. Harting, The optimization of electrostatic energy selection systems for low energy electrons, J. Electron Spectrosc. Relat. Phenom. 4, 293–312 (1974).

    CAS  Google Scholar 

  45. S. Trajmar, J.K. Rice, and A. Kupperman, A low-energy, high-resolution electronimpact spectrometer, Caltech, JPL Technical Memorandum 33–373 (March, 1968).

    Google Scholar 

  46. F.H. Read, Doppler and other broadening effects in electron scattering experiments, J. Phys. B 8, 1034–1040 (1975).

    Google Scholar 

  47. S.W. Jensen, Differential cross section measurements for electron impact on barium in ground and laser excited states, Ph.D. thesis, University of California, Riverside, California (1978).

    Google Scholar 

  48. R.J. Brunt and A.C. Gallagher, Electron scattering with 1 meV resolution, in Electronic and Atomic Collisions (G. Watel, ed.), pp. 129–142, North-Holland, Amsterdam (1978).

    Google Scholar 

  49. S. Trajmar, D.C. Cartwright, and R.I. Hall, Electron-impact excitation of the Rydberg states in O2 in the 7–10 eV energy-loss region, J. Chem. Phys. 65, 5275–5279 (1976).

    CAS  Google Scholar 

  50. J. Comer and F.H. Read, Electron impact studies of a resonant state of N2 , J. Phys. B 4, 1055–1062 (1971).

    CAS  Google Scholar 

  51. R. Brinkmann and S. Trajmar, Effective path length corrections in beam-beam scattering experiments, J. Phys. E 14, 245–255 (1981).

    Google Scholar 

  52. D.R. Olander and V. Kruger, Molecular beam sources fabricated from multichannel arrays HI. The exit density problem, J. Appl. Phys. 41, 2769–2776 (1970).

    Google Scholar 

  53. D.F. Register, S. Trajmar, and S.K. Srivastava, Absolute elastic differential electron scattering cross sections for He: A proposed calibration standard from 5 to 200 eV, Phys. Rev. A 21, 1134–1151 (1980).

    CAS  Google Scholar 

  54. J.B. Anderson, Molecular beams for nozzle sources, in Molecular Beams and Low-Density Gasdynamics (P.P. Wegener, ed.), pp. 1–91, Marcel Dekker, New York (1974).

    Google Scholar 

  55. S. Trajmar, W. Williams, and S.K. Srivastava, Electron-impact cross sections for Cu atoms, J. Phys. B 10, 3323–3333 (1977).

    CAS  Google Scholar 

  56. D. Bulgin, J. Dyke, F. Goodfellow, N. Jonathan, E. Lee, and A. Morris, A hightemperature furnace for use in photoelectron spectroscopy, J. Electron Spectrosc. Relat. Phenom. 12, 67–76 (1977).

    CAS  Google Scholar 

  57. R.K. Curran, Formation of SF6 by inelastically scattered electrons, J. Chem. Phys. 38, 780–781 (1963).

    CAS  Google Scholar 

  58. S. Cvejanović and F.H. Read, A new technique for threshold excitation spectroscopy, J. Phys. B 7, 1180–1193 (1974).

    Google Scholar 

  59. F. Pichou, A. Huetz, G. Joyez, M. Landau, and J. Mazeau, Electron impact excitation of helium: Absolute differential cross sections of the n = 2 and 3 3S states from threshold to 3.6 eV above, J. Phys. B 9, 933–944 (1976).

    CAS  Google Scholar 

  60. G. Joyez, Anisotropic threshold excitation of S states of helium by electron impact, in Electronic and Atomic Collisions, Abstracts of Contributed Papers, Xlth ICPEAC (K. Takayanagi and N. Oda. eds.), pp. 180–181, North-Holland, Amsterdam (1979).

    Google Scholar 

  61. G. Seng and F. Linder, Vibrational excitation of polar molecules by electron impact. II. Direct and resonant excitation in H2O, J. Phys. B 9, 2539–2551 (1976).

    CAS  Google Scholar 

  62. K. Rohr, Interaction mechanisms and cross sections for the scattering of low-energy electrons from HBr, J. Phys. B 11, 1849–1860 (1978).

    CAS  Google Scholar 

  63. K. Rohr, Threshold resonances in vibrational excitation of molecules by electron impact, in Symposium on Electron-Molecule Collisions, Invited Papers (I. Shimamura and M. Matsuzawa, eds.), pp. 67–76, University of Tokyo, Tokyo (1979).

    Google Scholar 

  64. W.C. Tarn and S.F. Wong, A magnetically collimated electron-impact spectrometer, Rev. Sci. Instrum. 50, 302–307 (1979).

    Google Scholar 

  65. A. Stamatovic and G.J. Schulz, Characteristics of the trochoidal electron monochromator, Rev. Sci. Instrum. 41, 423–427 (1970).

    Google Scholar 

  66. K. Rohr, Ph.D. Thesis, University of Kaiserslautern, Kaiserslautern, Federal Republic of Germany (1975).

    Google Scholar 

  67. K. Rohr and F. Linder, Vibrational excitation of polar molecules by electron impact. I. Threshold resonances in HF and HC1, J. Phys. B 9, 2521–2537 (1976).

    CAS  Google Scholar 

  68. C.E. Brion and A. Hamnett, Continuum optical oscillator strength measurements by electron spectroscopy in the gas phase, in The Excited State in Chemical Physics, Part 2, Advances in Chemical Physics (J.W. McGowan, ed.), Vol. 45, p. 1, John Wiley and Sons, New York (1981).

    Google Scholar 

  69. M.J. Van Der Wiel and C.E. Brion, “Photoelectron” spectroscopy by electron-impact coincidence measurements of scattered and ejected electrons in CO, J. Electron Spectrosc. Relat. Phenom. 1, 309–319 (1972).

    Google Scholar 

  70. D.G. Wilden, P.J. Hicks, and J. Comer, Autoionization of N2 studied using an electron time-of-flight coincidence spectrometer, J. Phys. B 9, 1959–1974 (1976).

    CAS  Google Scholar 

  71. C. Backx, G.R. Wight, and M.J. Van Der Wiel, Oscillator strengths (10–70 eV) for absorption, ionization and dissociation in H2, HD, and D2, obtained by an electronion coincidence method, J. Phys. B 9, 315–331 (1976).

    CAS  Google Scholar 

  72. K. Blum and H. Kleinpoppen, Electron-photon angular correlation in atomic physics, Phys. Rep. 52, 204–261 (1979).

    Google Scholar 

  73. J.W. McConkey, Electron-photon coincidence measurements as a probe of inelastic scattering of electrons from atoms and molecules, in Symposium on Electron-Molecule Collisions, Invited Papers (I. Shimamura and M. Matsuzawa, eds.), pp. 163–178, University of Tokyo, Tokyo (1979).

    Google Scholar 

  74. H. Kleinpoppen and J.F. Williams, eds., Coherence and Correlation in Atomic Collisions, Plenum Press, New York (1979).

    Google Scholar 

  75. J. Macek and D.J. Jaecks, Theory of atomic photon-particle coincidence measurements, Phys. Rev. A 4, 2288–2300 (1971).

    Google Scholar 

  76. U. Fano and J. Macek, Impact excitation and polarization of the emitted light, Rev. Mod. Phys. 45, 553–573 (1973).

    CAS  Google Scholar 

  77. K. Blum and J. Jakubowicz, Electron—photon angular correlation in electronmolecule scattering, J. Phys. B 11, 909–925 (1978).

    CAS  Google Scholar 

  78. I.C. Malcolm and J.W. McConkey, Electron—polarized-photon coincidence study of H2 (1g +1 Πu) excitation, J. Phys. B 12, L67–L70 (1979).

    CAS  Google Scholar 

  79. M. Eminyan, K.B. MacAdam, J. Slevin, and H. Kleinpoppen, Electron-photon angular correlations in electron—helium collisions: Measurements of complex excitation amplitudes, atomic orientations and alignment, J. Phys. B 7, 1519–1542 (1974).

    CAS  Google Scholar 

  80. M.T. Hollywood, A. Crowe, and J.F. Williams, Coherent excitation of 2 l P state of He for large momentum-transfer electron scattering, J. Phys. B 12, 819–834 (1979).

    CAS  Google Scholar 

  81. K.C. Schmidt, The channeltron electron multipliers, Model CEM4010, Technical Applications Note 9803, Bendix Electro-Optics Division, Ann Arbor, Michigan 48107 (25 April 1969).

    Google Scholar 

  82. J.P. Bromberg, Absolute differential cross sections of electrons elastically scattered by the rare gases. I. Small angle scattering between 200 and 700 eV, J. Chem. Phys. 61, 963–969 (1974).

    CAS  Google Scholar 

  83. G.E. Chamberlain, S.R. Mielczarek, and C.E. Kuyatt, Absolute measurement of differential cross sections for electron scattering in helium, Phys. Rev A 2, 1905–1922 (1970).

    Google Scholar 

  84. J.F. Williams and B.A. Willis, Electron scattering from atomic hydrogen I. Differential cross sections for excitation for the n = 2 states, J. Phys. B 8, 1641–1669 (1975).

    CAS  Google Scholar 

  85. G. Joyez, A. Huetz, I. Pichou, and J. Mazeau, New measurements of differential and integral cross sections for electron impact excitation of the n = 2 states of helium, in Electron and Photon Interactions with Atoms (H. Kleinpoppen and M.R.C. McDowell, eds.), pp. 349–364, Plenum Press, New York (1976).

    Google Scholar 

  86. S.K. Srivastava, A. Chutjian, and S. Trajmar, Absolute elastic differential electron scattering cross sections in the intermediate energy region, I. H2, J. Chem. Phys. 63, 2659–2665 (1975).

    CAS  Google Scholar 

  87. A. Chutjian, private communication.

    Google Scholar 

  88. D.C. Cartwright, A. Chutjian, S. Trajmar, and W. Williams, Electron-impact excitation of the electronic states of N2.I. Differential cross sections at incident energies from 10 to 50 eV, Phys.Rev.A 16, 1013–1040 (1977).

    CAS  Google Scholar 

  89. D.F. Register, H. Nishimura, and S. Trajmar, Elastic scattering and vibrational excitation of CO2 by 4, 10, 20 and 50 eV electrons, J. Phys. B 13, 1651–1662 (1980).

    CAS  Google Scholar 

  90. S.F. Wong and L. Dubé, Rotational excitation of N2 by electron impact: 1–4 eV, Phys. Rev. A 17, 570–576 (1978).

    CAS  Google Scholar 

  91. H. Tanaka, Pure rotational excitation of N,, O2, and CH4 by electron impact, in: Symposium on Electron-Molecule Collisions, Invited Papers (I. Shimamura and M. Matsuzawa, eds.), pp. 31–35, University of Tokyo, Tokyo (1979); H. Tanaka, L. Boesten, and I. Shimamura, Experimental determination of state-to-state rotational transition cross sections: e + N2, VII Intern. Conf. Atom. Phys., Book of Abstracts, pp. 43-44 (1980).

    Google Scholar 

  92. I. Shimamura, Systematics in the cross sections for excitation of molecules by electrons, in Symposium on Electron-Molecule Collisions, Invited Papers (I. Shimamura and M. Matsuzawa, eds.), pp. 13–30, University of Tokyo, Tokyo (1979); State-tostate rotational transition cross sections from unresolved energy loss spectra, Chem. Phys. Lett. 73, 328-333 (1980).

    Google Scholar 

  93. J.A. Preston, M.A. Hender, and J.W. McConkey, A versatile electron spectrometer, J. Phys. E 6, 661–666 (1973).

    CAS  Google Scholar 

  94. J.F. Williams, Electron scattering from hydrogen atoms II. Elastic scattering at low energies from 0.5 to 8.7 eV, J. Phys. B 8, 1683–1692 (1975).

    CAS  Google Scholar 

  95. J.F. Williams and B.A. Willis, The scattering of electrons from inert gases I. Absolute differential elastic cross sections for argon atoms, J. Phys. B 8, 1670–1682 (1975).

    CAS  Google Scholar 

  96. D.F. Register, Flow rate considerations for cross-section calibration (to be published).

    Google Scholar 

  97. Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik, Technik, 6th Ed., Vol. 1, pp. 325 and 373, Springer-Verlag, Berlin (1950).

    Google Scholar 

  98. A. Skerbele and E.N. Lassettre, New selection rule illustrated by collision cross-section studies on the B 1+X 1+ and the C 1+X 1+ transitions in carbon monoxide at kinetic energies of 300, 400 and 500 eV, J. Chem. Phys. 55, 424–434 (1971).

    CAS  Google Scholar 

  99. EIA Standard, RS-232-C, EIA Engineering Dept., 2001 Eye Street, N.W., Washington, D.C. 20006 (1969).

    Google Scholar 

  100. P.R. Bevington, Data Reduction and Error Analysis for the Physical Science, McGraw-Hill, New York (1969).

    Google Scholar 

  101. H.L. Alder and E.B. Roessler, Introduction to Probability and Statistics, 4th ed., W.H. Freemand and Co., San Francisco (1968).

    Google Scholar 

  102. D. Andrick and A. Bitsch, Experimental investigation and phase shift analysis of low-energy electron-helium scattering, J. Phys. B 8, 393–410 (1975).

    CAS  Google Scholar 

  103. N.C. Steph, L. McDonald, and D.E. Golden, Analysis of low-energy scattering cross sections I. Electron-helium elastic scattering, J. Phys. B 12, 1507–1527 (1979).

    CAS  Google Scholar 

  104. J. Geiger, Intensity perturbations due to configuration interaction observed in the electron energy loss spectrum of N2, J. Chem. Phys. 50, 7–11 (1969).

    CAS  Google Scholar 

  105. H. Boersch, J. Geiger, and W. Stickel, Das Auflösungsvermögen des elektrostatischmagnetischen Energieanalysator für schnelle Electronen, Z. Phys. 180, 415–424 (1964).

    Google Scholar 

  106. R.A. Bonham and M. Fink, High-Energy Electron Scattering, pp. 239–248, Von Nostrand Reinhold, New York (1974).

    Google Scholar 

  107. E.N. Lassettre, A.S. Berman, S.M. Silverman, and M.E. Krasnow, Electron spectrometer for the study of inelastic electronic collision cross sections, J. Chem. Phys. 40, 1232–1242 (1964).

    CAS  Google Scholar 

  108. A.M. Skerbele and E.N. Lassettre, Higher-resolution study of the electron-impact spectrum of helium, J. Chem. Phys. 40, 1271–1275 (1964).

    CAS  Google Scholar 

  109. A. Hamnett, W. Stoll, G. Branton, C.E. Brion, and M.J. Van Der Wiel, A kinematic and experimental investigation of the (e, 2e) simulation of photoelectron spectroscopy, J. Phys. B 9, 945–957 (1976).

    CAS  Google Scholar 

  110. C. Backx, M. Klewer, and M.J. Van Der Wiel, Photofluorescence by electron impact: determination of the relative oscillator strength for formation of the B 2∑ state of CO+, Chem. Phys. Lett. 20, 100–103 (1973).

    CAS  Google Scholar 

  111. K.H. Tan, C.E. Brion, Ph. E. Van Der Leeuw, and M.J. Van Der Wiel, Absolute oscillator strengths (10–60 eV) for the photoabsorption, photoionization and fragmentation of H2O, Chem. Phys. 29, 229–309 (1978).

    Google Scholar 

  112. H.A. Bethe, Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie, Ann. Phys. (Leipzig) 5, 325–400 (1930).

    CAS  Google Scholar 

  113. M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules-The Bethe theory revisited, Rev. Mod. Phys. 43, 297–347 (1971).

    CAS  Google Scholar 

  114. E.N. Lassettre, A. Skerbele, and M.A. Dillon. Generalized oscillator strength for 1 1 S → 2 l P transition of helium. Theory of limiting oscillator strengths, J. Chem. Phys. 50, 1829–1839 (1969).

    CAS  Google Scholar 

  115. F.H. Read and G.C. King, Inner-shell excited states of molecules, Symposium on Electron-Molecule Collisions, Invited Papers (I. Shimamura and M. Matsuzawa, eds.), pp. 155–162, University of Tokyo, Tokyo (1979).

    Google Scholar 

  116. N.D. Bhaskar, B. Jaduszliver, and B. Bederson, Scattering of low-energy electrons by excited sodium atoms using a photon and electron atomic beam recoil technique, Phys. Rev. Lett. 38, 14–17 (1977).

    CAS  Google Scholar 

  117. B. Jaduszliver, R. Dang, P. Weiss, and B. Bederson, Total cross sections for the scattering of low-energy electrons by excited sodium atoms, in Coherence and Correlation in Atomic Collisions (H. Kleinpoppen and J.F. Williams, eds.), pp. 613–623, Plenum Press, New York (1980).

    Google Scholar 

  118. D.F. Register, S. Trajmar, S.W. Jensen, and R.T. Poe, Electron scattering by laser excited barium atoms, Phys. Rev. Lett. 41, 749–752 (1978).

    CAS  Google Scholar 

  119. I.V. Hertel and W. Stoll, Collision experiments with laser excited atoms in crossed beams, in Advances in Atomic and Molecular Physics (D.R. Bates and B. Bederson, eds.), pp. 113–228, Academic Press, New York (1977).

    Google Scholar 

  120. M. Gavrila and M.J. Van Der Wiel, Free—free radiative transitions of electron—atom systems, Comments At. Mol. Phys. 8, 1–20 (1978).

    CAS  Google Scholar 

  121. A. Weingartshofer, E.M. Clarke, J.K. Holmes, and C. Jung, Experiments on multiphoton free-free transitions, Phys. Rev. A 19, 2371–2376 (1979).

    CAS  Google Scholar 

  122. D. Andrick and L. Langhans, Measurement of the free-free cross section of e —Ar scattering, J. Phys. B 11, 2355–2360 (1978).

    CAS  Google Scholar 

  123. L. Langhans, Resonance structures in the free-free cross sections of e —Ar scattering, J. Phys. B 11, 2361–2366 (1978).

    CAS  Google Scholar 

  124. P.J.K. Langendam and M.J. Van Der Wiel. Fine structure of the neon 18.5–18.7 eV resonances by means of resonant free—free radiative absorptions, J. Phys. B 11, 3603–3613 (1978).

    CAS  Google Scholar 

  125. R.W. Wijnaendts van Resandt and J. Los, Position sensitive detection in atomic physics. in Electronic and Atomic Collisions (N. Oda and K. Takayanagi, eds.), pp. 831–842, North-Holland, Amsterdam (1980).

    Google Scholar 

  126. S.T. Hood and E. Weigold, A new electron coincidence spectrometer with position sensitive detectors. J. Electron Spectrosc. Relat. Phenom. 15, 237–240 (1979); F.H. Read and J. Comer, private communication.

    Google Scholar 

  127. CE. Giffin, Jet Propulsion Laboratory, private communication.

    Google Scholar 

  128. D.T. Pierce, R.J. Celotta, G.C. Wang, W.N. Unertl, A. Galejs, CE. Kuyatt, and S.R. Mielczarek, GaAs spin polarized electron source, Rev. Sci. Instrum. 51, 478–499 (1980).

    CAS  Google Scholar 

  129. G.-C. Wang, B.I. Dunlap, R.J. Celotta, and D.T. Pierce, Symmetry in low-energy polarized electron diffraction, Phys. Rev. Lett. 42, 1349–1352 (1979).

    CAS  Google Scholar 

  130. R.J. Celotta, D.T. Pierce, G.-C. Wang, S.D. Bader, and G.P. Felcher, Surface magnetization of ferromagnetics Ni (110): A polarized low-energy electron diffraction experiment, Phys. Rev. Lett. 43, 728–731 (1979).

    CAS  Google Scholar 

  131. S. Trajmar and R.I. Hall, Dissociative electron attachment in H2O and D2O: Energy and angular distribution of H and D fragments, J. Phys. B 7, L458–461 (1974).

    CAS  Google Scholar 

  132. R.I. Hall, Recent experiments concerning dissociative resonant states in electronmolecule collisions, in Electronic and Atomic Collisions (G. Watel, ed.), pp. 25–41, North-Holland, Amsterdam (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Trajmar, S., Register, D.F. (1984). Experimental Techniques for Cross-Section Measurements. In: Shimamura, I., Takayanagi, K. (eds) Electron-Molecule Collisions. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2357-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2357-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9443-6

  • Online ISBN: 978-1-4613-2357-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics