Skip to main content

The Effects of the Thoracic Volume Conductor (Inhomogeneities) on the Electrocardiogram

  • Chapter
Pediatric and Fundamental Electrocardiography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 56))

Abstract

The electrical activity of cardiac muscle cells is projected to the surface of the torso by means of the intervening conducting medium. The surface potentials that are recorded as electrocardiograms reflect, therefore, the properties of both the heart electrical generators and the surrounding passive volume conductor. Since the goal of electrocardiography is to reconstruct cardiac electrical events from body surface potential data, understanding the role played by the torso volume conductor in determining the surface potential distribution is essential. The major part of this chapter deals with the results of a theoretical simulation in which the electrocardiographic volume conductor is represented by a spherical “heart” eccentrically located in a spherical “torso.” This idealized model permits a systematic study of the effects of the various torso compartments (inhomogeneities) on the electrocardiogram. Results of other theoretical and experimental studies, as well as electrocardiographic clinical observations are discussed in relation to the findings of the eccentric spheres model. The section dealing with the model simulations is preceded by a discussions of the electrical properties of the various torso inhomogeneities and their representation in terms of equivalent sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plonsey R, Heppner D. Considerations of quasi-stationarity in electrophysiological systems. Bull Math Biophys 29:657, 1967.

    Article  PubMed  CAS  Google Scholar 

  2. Jackson WD. Classical Electrodynamics. New York: John Wiley, 1962.

    Google Scholar 

  3. Schwan HP, Kay CF. The conductivity of living tissues. Ann NY Acad Sci 65:1007, 1957.

    Article  PubMed  CAS  Google Scholar 

  4. Geddes LA, Baker LE. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271, 1967.

    Article  PubMed  CAS  Google Scholar 

  5. Rush S, Abildskov JA, McFee R. Resistivity of body tissues at low frequencies. Circ Res 12:40, 1963.

    PubMed  CAS  Google Scholar 

  6. Schwan HP, and Kay CF. Specific resistance of body tissues. Circ Res 4:664, 1956.

    PubMed  Google Scholar 

  7. Cobbold RSC. Transducers for Biomedical Measurements. New York: J Wiley, 1974.

    Google Scholar 

  8. Rush S, Nelson CV. The effects of electrical inhomogeneity and anisotropy of thoracic tissues on the field of the heart. In CV Nelson and DB Geselowitz (eds.), The Theoretical Basis of Electrocardiology. Oxford: Clarendon Press, 1976, pp. 323–354.

    Google Scholar 

  9. Maxwell JC. A Treatise on electricity and Magnetism, vol. 1. Oxford: Clarendon Press, 1904.

    Google Scholar 

  10. Cole KS, Curtis HJ. Bioelectricity, electric physiology. In O Glasser (ed.), Medical Physics, vol. II. Chicago: The Year Book Publishers, 1944.

    Google Scholar 

  11. Burger HC, and Van Milaan JB. Measurement of the specific resistance of the human body to direct current. Acta Med Scand, 114:584, 1943.

    Article  Google Scholar 

  12. Burger HC, and Van Dongen R. Specific electric resistance of body tissues. Phys Med Biol 5:431, 1961.

    Article  PubMed  CAS  Google Scholar 

  13. Hirsch FG Texter EC, Wood LA, Ballard WC, Horan FC, Wright MD. The electrical conductivity of blood. 1. Relationship to erythrocyte concentration. Blood 5:1017, 1950.

    PubMed  CAS  Google Scholar 

  14. Rosenthal RL, Tobias CW. Measurement of the electrical resistance of human blood; use in coagulation studies and cell volume determinations. J Lab Clin Med 33: 1110, 1948.

    PubMed  CAS  Google Scholar 

  15. Molnar GW, Nyboer J, Levine RL. The effect of temperature and flow on the specific resistance of human venous blood. U.S. Army Medical Research Laboratory Report, Fort Knox, KY. Rep. 127. Project 6-64-12-028, pp. 1–118, 1953.

    Google Scholar 

  16. Rush S. Methods of measuring the resistivities of anisotropic conducting media in situ. J Res Natn Bur Stand 66c:217, 1962.

    Google Scholar 

  17. Plonsey R. Laws governing current flow in the volume conductor. In CV Nelson and DB Geselowitz (eds.), The Theoretical Basis of Electrocardiology. Oxford: Clarendon Press, 1976.

    Google Scholar 

  18. Geselowitz DB. On bioelectric potentials in an inhomogeneous volume conductor. Biophys J 7:1, 1967.

    Article  PubMed  CAS  Google Scholar 

  19. Panofsky WH, and Phillips M. Classical Electricity and Magnetism. Reading, MA: Addison-Wesley, 1962.

    Google Scholar 

  20. Plonsey R. Bioelectric Phenomena. New York: McGraw-Hill, 1969.

    Google Scholar 

  21. McFee R, Rush S. Qualitative effects of thoracic resistivity variations on the interpretation of electrocardiograms: The low-resistance surface layer. Am Heart J 76:48, 1968.

    Article  PubMed  CAS  Google Scholar 

  22. Rudy Y, Plonsey R. The eccentric spheres model as the basis for a study of the role of geometry and inhomogeneities in electrocardiography. IEEE Trans Biomed Eng 26:392, 1979.

    Article  PubMed  CAS  Google Scholar 

  23. Rush S. Inhomogeneities as a cause of multiple peaks of heart potential on the body surface: Theoretical studies. IEEE Trans Biomed Eng 18:115, 1971.

    Article  PubMed  CAS  Google Scholar 

  24. Taccardi B, D’Alchè P. Vérification of experimentale dùne method mathématique pour le calcul de la distribution des potentiels engendrés par un dipole dans un milieu conducteur non homogène. J Physiologie 57:281, 1965.

    CAS  Google Scholar 

  25. Geselowitz DB, Ishiwatari H. A theoretic study of the effect of the intracavitary blood mass on the dipolarity of an equivalent heart generator. In I Hoffman (ed.), Vectorcardiology—1965. Amsterdam: North-Holland, 1966, pp. 393–402.

    Google Scholar 

  26. Okada RH An experimental study of multiple dipole potentials and the effects of inhomogeneities in volume conductors. Am Heart J 54:567, 1957.

    Article  PubMed  CAS  Google Scholar 

  27. Horan L, Flowers N, Brody D. Body surface potential distribution; comparison of naturally and artificially produced signals as analyzed by digital computer. Circ Res 13:373, 1963.

    PubMed  CAS  Google Scholar 

  28. Gulrajani RM, Mailloux GE. A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models. Circ Res 52:45, 1983.

    PubMed  CAS  Google Scholar 

  29. Rudy, Y, Plonsey R. A comparison of volume conductor and source geometry effects on body surface and epicardial potentials. Circ Res 46: 283, 1980.

    PubMed  CAS  Google Scholar 

  30. King TD, Barr RC, Herman-Giddens GS, Boaz DE, Spach MS. Isopotential body surface maps and their relationship to atrial potentials in the dog. Circ Res 20:393, 1972.

    Google Scholar 

  31. Spach MS, Barr RC, Lanning CF, Tucek PC. Origin of body surface QRS and T wave potentials distributions in the intact chimpanzee. Circulation 55:268, 1977.

    PubMed  CAS  Google Scholar 

  32. Spach MS, Barr RC, Lanning CF. Experimental basis for QRS and T wave potential distributions in the intact chimpanzee. Circ Res 42:103, 1978.

    PubMed  CAS  Google Scholar 

  33. Ramsey M III, Barr RC, Spach MS. Comparison of measured torso potentials with those simulated from epicardial potentials for ventricular depolarization and repolarization in the intact dog. Circ Res 41:660, 1977.

    PubMed  Google Scholar 

  34. Abildskov JA, Burgess MJ, Lux RL, Wyatt RF. Experimental evidence for regional cardiac influence in body surface isopotential maps of dogs. Circ Res 38:386, 1976.

    PubMed  CAS  Google Scholar 

  35. Taccardi B. Contribution a la determination quantitative des erreurs de la vectorcardiographie. Arch Int Physiol 59:63, 1951.

    Article  Google Scholar 

  36. Taccardi B. La distribution spatiale des potentials cardiaques. Acta Cardiol 13:173, 1958.

    PubMed  CAS  Google Scholar 

  37. Taccardi B, Musso E, and DeAmbroggi L. Current and potential distribution around an isolated dog heart. In P Rijlant (ed.), Proceedings of the Satellite Symposium of the 25th International Congress on Physiological Science (The Electrical Field of the Heart) and the 12th Colloquium Vectorcardiographicum. Brussels: Presses Academiques Europenées, pp. 566–512, 1972.

    Google Scholar 

  38. DeAmbroggi L, Taccardi B. Current and potential fields generated by two dipoles. Circ Res 27:901, 1970.

    PubMed  Google Scholar 

  39. Mirvis DM, Keller FW, Ideker RE, Cox JW, Zettergren DG, Dowdie RF. Values and limitations of surface isopotential mapping techniques in the detection and localization of multiple discrete epicardial events. J Electrocardiol 10:347 1977.

    Article  PubMed  CAS  Google Scholar 

  40. Brody DA. A theoretical analysis of intracavitary blood mass influence on the heart—lead relationship. Circ Res 4:731, 1956.

    PubMed  CAS  Google Scholar 

  41. Rudy Y, Plonsey R. A note on the “Brody-Effect.” J Electrocardiol 11:87, 1978.

    Article  PubMed  CAS  Google Scholar 

  42. Rudy Y, Plonsey R, Liebman J. The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circ Res 44:104, 1979.

    PubMed  CAS  Google Scholar 

  43. Liebman J, Thomas CW, Rudy Y, Plonsey R. Electrocardiographic body surface potential maps of the QRS of normal children. J Electrocardiol 14:249, 1981.

    Article  Google Scholar 

  44. Miller WT, Geselowitz DB. Simulation studies of the electrocardiogram. I. The normal heart. Circ Res 43:301, 1978.

    PubMed  CAS  Google Scholar 

  45. Nelson CV, Rand PW, Angelakos ET, Hugenholtz PG. Effect of intracardiac blood on the spatial vectorcardiogram. 1. Results in the dog. Circ Res 31:95, 1972.

    PubMed  CAS  Google Scholar 

  46. Rosenthal A, Restieauz NJ, Feig SA. Influence of acute variations in hematocrit on the QRS complex of the Frank electrocardiogram. Circulation 44:456, 1971.

    PubMed  CAS  Google Scholar 

  47. Manoach M, Gitter S, Grossman E, Varon D. The relation between the conductivity of the blood and the body tissue and the amplitude of the QRS during heart filling and pericardial compression in the cat. Am Heart J 84:72, 1972.

    Article  PubMed  CAS  Google Scholar 

  48. Kramer DA, Hamlin RL, and Weed HR. Effects of pericardial effusates of various conductivities on body surface potentials in dogs—documentation of the eccentric spheres model. Circ Res 55:788, 1984.

    PubMed  CAS  Google Scholar 

  49. Arthur RM, Geselowitz DB. Effect of inhomogeneities on the apparent location and magnitude of a cardiac current dipole source. IEEE Trans Biomed Eng 17:141, 1970.

    Article  PubMed  CAS  Google Scholar 

  50. Burch GE, DePasquale NP. Electrocardiographic diagnosis of pulmonary heart disease. Am J Cardiol 2:622, 1963.

    Article  Google Scholar 

  51. Wasserburger RH, Kelle JR, Rasmussen BS, Juhl JH. The electrocardiographic pentalogy of pulmonary emphysema. Circulation 20:831, 1959.

    PubMed  CAS  Google Scholar 

  52. Selvester RH, Rubin HB. New criteria for the electrocardiographic diagnosis of emphysema and cor pulmonale. Am Heart J 69:437, 1965.

    Article  PubMed  CAS  Google Scholar 

  53. Littman D. The electrocardiographic findings in pulmonary emphysema. Am J Cardiol 5:339, 1960.

    Article  Google Scholar 

  54. Kerr A, Adicoff A, Klingeman JD, Pipberger HV. Computer analysis of the orthogonal electrocardiogram in pulmonary emphysema. Am J Cardiol 25:34, 1970.

    Article  PubMed  Google Scholar 

  55. Flaherty JT, Blumenschein SD, Spock A, Canent RV, Gallie TM, Boineau JP, Spach MS. Cardiac potentials in pulmonary disease: Over-distension of the lung versus cor pulmonale (right ventricular hypertrophy). Am J Cardiol 20:29, 1967.

    Article  PubMed  CAS  Google Scholar 

  56. Toyama J, Okada A, Nagata Y, Okajima M, Yamada K. Electrocardiographic changes in pulmonary emphysema: Effects of experimentally induced over-inflation of the lungs on QRS complexes. Am Heart J 87:606, 1974.

    Article  PubMed  CAS  Google Scholar 

  57. Van De Water JM, Mount BE, Barela JR, Schuster R, Leacock FS. Monitoring the chest impedance. Chest 64:597, 1973.

    Article  PubMed  Google Scholar 

  58. Rudy Y, Wood R, Plonsey R, Liebman J. The effect of high lung conductivity on electrocardiographic potentials-results from human subjects undergoing bronchopulmonary lavage. Circulation 65:440, 1982.

    Article  PubMed  CAS  Google Scholar 

  59. Barr RC, Spach MS. Inverse solutions directly in terms of potentials. In CV Nelson and DB Geselowitz (eds.), The Theoretical Basis of Electrocardiology. Oxford: Clarendon Press, 1976, pp. 294–304.

    Google Scholar 

  60. Rudy Y. Critical aspects of the forward and inverse problems in electrocardiography. In S Sideman and R Beyar (eds.), Simulation and Imaging of the Cardiac System. Amdrecht: Martinus Nijhoff Publishers, 1985 pp. 279–298.

    Google Scholar 

  61. Rudy Y, Plonsey R. Comments on the effect of variations in the size of the heart on the magnitude of ECG potentials. J Electrocardiol 13:79, 1980.

    Article  PubMed  CAS  Google Scholar 

  62. Manoach M, Gitter S, Grossman E, Varon D, Gassner S. Influence of hemorrhage on the QRS complex of the electrocardiogram. Am Heart J 82:55, 1971.

    Article  PubMed  CAS  Google Scholar 

  63. Manoach M, Gassner S, Grossman E, Varon D, Gitter S. Influence of cardiac filling on the amplitude of the QRS complex in normal cats. Israel J Med Sci 8:566, 1972.

    Google Scholar 

  64. Angelakos ET, Gokhan N. Influence of venous inflow volume on the magnitude of the QRS potentials in-vivo. Cardiologia 43:337, 1963.

    Article  Google Scholar 

  65. Ishikawa K, Berson AS, Pipberger HW Electrocardiographic changes due to cardiac enlargement. Am Heart J 81:635, 1971.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing

About this chapter

Cite this chapter

Rudy, Y. (1987). The Effects of the Thoracic Volume Conductor (Inhomogeneities) on the Electrocardiogram. In: Liebman, J., Plonsey, R., Rudy, Y. (eds) Pediatric and Fundamental Electrocardiography. Developments in Cardiovascular Medicine, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2323-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2323-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9428-3

  • Online ISBN: 978-1-4613-2323-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics