Skip to main content

Determination of the Darcy Permeability of Porous Media Including Sintered Metal Plugs

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 31))

Abstract

Porous media have become of increasing importance in low temperature applications. In contrast to the usual Newtonian fluid flow near room temperature, the mass throughput characterization appears to be less certain at liquid He4 temperatures, in particular, in the superfluid He II range. In the present work, the Darcy permeability has been evaluated for laminar flow at very small velocities in Newtonian fluids. However, in the non-Newtonian He II superfluid, the Darcy permeability is not so readily obtainable from simple fluid flow experiments. In our experiments, sintered metal porous plugs with a nominal (filtration rating) size of the order 1 µm to 10 µm have been used. The characteristic length diagram for the equivalent Ergun particle diameter, the filtration rating, and the characteristic throughput length has been evaluated as a function of the Darcy permeability. This set of functions is seen to give a comprehensive picture of porous media throughput properties. In non-Newtonian super- fluid He II, the present work relies on the two-fluid model as the frame of reference. It is found that there exists an analog of Darcy’s law for the flow of the normal fluid component of He II. In this analog, the pressure gradient, mass flux, and the shear viscosity are replaced by the thermomechanical pressure gradient, normal fluid mass flux, and the normal fluid shear viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Appel and F.X. Eder, Cryogenics 23: 587 (1980).

    Article  Google Scholar 

  2. D. Petrac and P.V. Mason, in: “Advances in Cryogenic Engineering,” Vol. 29, Plenum Press, New York, (1984), p. 661.

    Book  Google Scholar 

  3. G.V. Heijden, V.J.P. de Voogt, and H.C. Kramers, Physica 59: 473 (1973).

    Article  Google Scholar 

  4. G.L. Gaines, Jr., Sorption of Gases, in: “Scientific Foundations of Vacuum Techniques,” S. Dushman and J.M. Lafferty, eds., Wiley, New York (1962), p. 435.

    Google Scholar 

  5. M.A. Janocko, R.D. Blaugher, and P.W. Eckels, in: “Proc. 7th Intl. Cryog. Engr. Conf.,” IPC Press, Guildford (1978), p. 679.

    Google Scholar 

  6. W.A. Fietz, J.W. Lue, and J.R. Miller, ibid. p. 689.

    Google Scholar 

  7. W. Peiyi and W.A. Little, Cryogenics 23: 273 (1983).

    Article  Google Scholar 

  8. A.E. Scheidegger, Hydrodynamics in Porous Media, in: “Encyclopedia of Physics, Fluid Dynamics Vol. II,” S. Fluegge, ed., Springer, Berlin (1963), p. 625.

    Google Scholar 

  9. O. Reynolds, “Papers on Mechanical and Physical Subjects,” Vol. I, Cambridge University Press, Cambridge (1900), p. 81.

    MATH  Google Scholar 

  10. S. Ergun, Chem. Engr. Prog. 48: 89 (1952).

    Google Scholar 

  11. P. C. Carman, “The Flow of Gases Through Porous Media,” Academic Press, New York (1956).

    Google Scholar 

  12. L.D. Landau and E.M. Lifshitz, in: “Fluid Mechanics,” Pergamon Press, London (1959), p. 507.

    Book  Google Scholar 

  13. H. London, Proc. Roy. Soc., A171: 484 (1939).

    Article  MATH  Google Scholar 

  14. S.W.K. Yuan and T.H.K. Frederking, in: “ASME-JSME Thermal Engr. Joint Conf., Vol. 2,” Y. Mori and W.J. Yang, eds., JSME/ASME, Tokyo/New York (1983), p. 191

    Google Scholar 

  15. S.W.K. Yuan et al, in: “Proc. 1983 Space Helium Dewar Conf.,” Huntsville, Alabama, J.B. Hendricks and G.R. Karr, eds., Univ. of Alabama (1984), p. 149.

    Google Scholar 

  16. J.M. Lee et al, in: “Proc. Space Cryog. Workshop,” I. Klipping, ed., Berlin (1984), p. 83.

    Google Scholar 

  17. T.H.K. Frederking et al, in: “Advances in Cryogenic Engineering,” Vol. 29, Plenum Press, New York (1984), p. 687.

    Book  Google Scholar 

  18. H.D. Denner et al, Cryogenics, 18: 166 (1978).

    Article  Google Scholar 

  19. A.T. Robinson, Trans. ASM, 57: 650 (1964).

    Google Scholar 

  20. R.B. Hall, M. Sc. Thesis, Univ. Calif., Los Angeles (1967).

    Google Scholar 

  21. C. Chuang, Y.I. Kim, and T.H.K. Frederking, in: “Processes and Equipment in Energy Systems,” Proc. 3rd Intersoc. Cryog. Symp. (ASME, AIChE, IIR), ASME, New York (1980), p. 135.

    Google Scholar 

  22. R.-M. German, Powder Technology 30: 81 (1981).

    Article  Google Scholar 

  23. T.H.K. Frederking et al, Physica 108B: 1129 (1981).

    Google Scholar 

  24. H. Forstat, Phys. Rev. 111: 1450 (1958).

    Article  Google Scholar 

  25. R. Schmidt and H. Wiechert, Z. Physik 36: 1 (1979).

    Article  Google Scholar 

  26. E-C. Alcaraz and H.H. Madden, Phys. Rev. A1: 207 (1970).

    Article  Google Scholar 

  27. E.C. Alcaraz and H.H. Madden, Phys. Rev. A3: 1698 (1971).

    Article  Google Scholar 

  28. B.P.M. Helvensteijn, S.R. Breon, and S.W. van Sciver, in: “Advances in Cryogenic Engineering,” Vol. 27, Plenum Press, New York (1982), p. 485.

    Google Scholar 

  29. B.P.M. Helvensteijn and S.W. van Sciver, in: “Advances in Cryogenic Engineering,” Vol. 29, Plenum Press, New York (1984), p. 343.

    Book  Google Scholar 

  30. S.W.K. Yuan, Ph.D. Thesis, Univ. Calif., Los Angeles (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Frederking, T.H.K., Hepler, W.A., Yuan, S.W.K., Feng, W.F. (1986). Determination of the Darcy Permeability of Porous Media Including Sintered Metal Plugs. In: Fast, R.W. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2213-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2213-9_58

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9299-9

  • Online ISBN: 978-1-4613-2213-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics