Skip to main content

Macrophages and Genetically Determined Natural Resistance to Virus Infections

  • Chapter
Viruses, Immunity, and Immunodeficiency

Abstract

A wide variety of host defense mechanisms are involved in resistance against virus infections. Although it has become increasingly clear that the potential means of defense work in concert during a virus infection and that the outcome will reflect a delicate and dynamic interaction between the invading virus and the defense mechanisms mounted by the host, their relative roles may vary in different virus infections and also in different phases of a particular infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. B. Bang, Genetics of resistance of animals to viruses: I. Introduction and studies in mice, Adv. Virus Res. 23: 270 (1978).

    Google Scholar 

  2. O. Haller, Natural resistance to tumors and viruses, Curr. Top. Microbiol. Immunol. 92 (1981).

    Google Scholar 

  3. S. C. Mogensen, Role of macrophages in natural resistance to virus infections, Microbiol. Rev. 43: 1 (1979).

    PubMed  CAS  Google Scholar 

  4. H. Kirchner, “Immunobiology of Infection with Herpes Simplex Virus,” Karger, Basel (1982).

    Google Scholar 

  5. R. M. Welsh, Natural cell-mediated immunity during viral infections, Curr. Top. Microbiol. Immunol. 92: 83 (1981).

    PubMed  CAS  Google Scholar 

  6. E. Metchnikoff, “Leçons sur la Pathologie Comparée de 1’Inflammation,” Masson, Paris (1892).

    Google Scholar 

  7. L. Aschoff, Das reticulo-endotheliale system, Ergeb. Inn. Med. Kinderheilkd. 26: 1 (1924).

    Google Scholar 

  8. R. van Furth, A. Cohn, J. G. Hirsch, J. H. Humphrey, W. G. Spector, and H. L. Langevoort, The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells, Bull. W.H.O. 46: 845 (1972).

    PubMed  Google Scholar 

  9. C. A. Miras, Aspects of pathogenesis of virus diseases, Bacteriol. Rev. 28: 30 (1964).

    Google Scholar 

  10. P. S. Morahan and S. S. Morse, Macrophage-virus interactions, in: “Virus-Lymphocyte Interactions: Implications for Disease,” M. R. Proffitt, ed., Elsevier/North Holland Publishing Co., New York (1979).

    Google Scholar 

  11. S. Plaeger-Marshall, L. A. Wilson, and J. JW. Smith, Permissiveness of rabbit monocytes and macrophages for herpes simplex virus type 1, Infect. Immun. 35: 151 (1982).

    PubMed  CAS  Google Scholar 

  12. C. Lopez and G. Dudas, Replication of herpes simplex virus type 1 in macrophages from resistant and susceptible mice, Infect. Immun. 23: 432 (1979).

    PubMed  CAS  Google Scholar 

  13. C. A. Daniels, E. S. Kleinerman, and R. Snyderman, Abortive and productive infections of human mononuclear phagocytes by type 1 herpes simplex virus, Am. J. Pathol. 91: 119 (1978).

    PubMed  CAS  Google Scholar 

  14. G. C. Lavelle and F. B. Bang, Influence of type and concentration of sera in vitro on susceptibility of genetically resistant cells to mouse hepatitis virus, J. Gen. Virol. 12: 233 (1971).

    Article  PubMed  CAS  Google Scholar 

  15. S. B. Halstead and E. J. O’Rourke, Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody, J. Exp. Med. 146: 201 (1977).

    Article  PubMed  CAS  Google Scholar 

  16. J. J. Schlesinger and M. W. Brandriss, Growth of 17 D yellow fever virus in a macrophage-like cell line, U 937: role of Fc and viral receptors in antibody-mediated infection, J. Immunol. 127: 659 (1981).

    PubMed  CAS  Google Scholar 

  17. K. Hayashi, T. Kurata, T. Morishima, and T. Nassery, Analysis of the inhibitory effect of peritoneal macrophages on the spread of herpes simplex virus, Infect. Immun. 28: 350 (1980).

    PubMed  CAS  Google Scholar 

  18. S. S. Morse and P. S. Morahan, Activated macrophages mediate, Cell. Immunol. 58: 72 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. P. Wildy, P. G. H. Gell, J. Rhodes, and A. Newton, Inhibition of herpes simplex virus multiplication by activated macrophages: a role for arginase? Infect. Immun. 37: 40 (1982).

    PubMed  CAS  Google Scholar 

  20. A. J. Schlabach, D. Martinez, A. K. Field, and A. A. Tytell, Resistance of C58 mice to primary systemic herpes simplex virus infection: macrophage dependence and T-cell independence, Infect. Immun. 26: 615 (1979).

    PubMed  CAS  Google Scholar 

  21. S. A. Stohlman, J. G. Woodward, and J. A. Freiinger, Macrophage antiviral activity: extrinsic versus intrinsic activity, Infect. Immun. 36: 672 (1982).

    PubMed  CAS  Google Scholar 

  22. S. C. Mogensen, Genetics of macrophage-controlled resistance to hepatitis induced by herpes simplex virus type 2 in mice, Infect. Immun. 19: 46 (1978).

    PubMed  CAS  Google Scholar 

  23. B. Roser, The distribution of intravenously injected peritoneal macrophages in the mouse, Aust. J. Exp. Biol. Med. Sei. 43: 553 (1965).

    Article  CAS  Google Scholar 

  24. A. C. Allison, J. S. Harington, and M. Birbeck, An examination of the cytotoxic effects of silica on macrophages, J. Exp. Med. 124: 141 (1966).

    Article  PubMed  CAS  Google Scholar 

  25. J. J. Wirth, W. P. Carney, and E. F. Wheelock, The effect of particle size on the immunodepressive properties of silica, J. Immunol. Meth. 32: 357 (1980).

    Article  CAS  Google Scholar 

  26. H. duBuy, Effect of silica on virus infections in mice and mouse tissue culture, Infect. Immun. 11: 996 (1975).

    PubMed  CAS  Google Scholar 

  27. A. Knoblich, J. Gortz, V. Harle-Grupp, and D. Falke, Kinetics and genetics of herpes simplex virus-induced antibody formation in mice, Infect. Immun. 39: 15 (1983).

    PubMed  CAS  Google Scholar 

  28. P. S. Morahan, P. H. Coleman, S. S. Morse, and A. Volkman, Resistance to infections in mice with defects in the activities of mononuclear phagocytes and natural killer cells: effects of immunomodulators in beige mice and 89 Sr-treated mice, Infect. Immun. 37: 1079 (1982).

    PubMed  CAS  Google Scholar 

  29. S. C. Mogensen and H. K. Anderson, Role of activated macrophages in resistance of congenitally athymic nude mice to hepatitis induced by herpes simplex virus type 2, Infect. Immun. 19: 792 (1978).

    PubMed  CAS  Google Scholar 

  30. S. C. Mogensen, Role of macrophages in hepatitis induced by herpes simplex virus types 1 and 2 in mice, Infect. Immun. 15: 686 (1977a).

    PubMed  CAS  Google Scholar 

  31. S. C. Mogensen and H. K. Anderson, Effect of silica on the pathogenic distinction between herpes simplex virus type 1 and 2 hepatitis in mice, Infect. Immun. 17: 274 (1977).

    PubMed  CAS  Google Scholar 

  32. J. W. Gowen and R. H. Schott, Genetic constitution in mice as differentiated by two diseases, pseudorabies and mouse typhoid, Am. J. Hyg. 18: 674 (1933).

    Google Scholar 

  33. C. J. Lynch and T. P. Hughes, The inheritance of susceptibility to yellow fever encephalitis in mice, Genetics 21: 104 (1936).

    PubMed  CAS  Google Scholar 

  34. L. T. Webster, Inheritance of resistance of mice to enteric bacterial neurotropic virus infections, J. Exp. Med. 65: 261 (1937).

    Article  PubMed  CAS  Google Scholar 

  35. A. B. Sabin, Nature of inherited resistance to viruses affecting the nervous system, Proc. Natl. Acad. Sci. 38: 540 (1952).

    Article  PubMed  CAS  Google Scholar 

  36. G. T. Goodmann and H. Koprowski, Study on the mechanism of innate resistance to virus infection, J. Cell. Comp. Physiol. 59: 333 (1962).

    Article  Google Scholar 

  37. M. B. Darnell and H. Koprowski, Genetically determined resistance to infection with group B arboviruses. II. Increased production of interfering particles in cell cultures from resistant mice, J. Infect. Pis. 129: 248 (1974).

    Article  CAS  Google Scholar 

  38. M. A. Brinton, Genetically controlled resistance to flavivirus and lactatedehydrogenase-elevating virus-induced disease, Curr. Top. Microbiol. Immunol. 92: 1 (1981).

    PubMed  CAS  Google Scholar 

  39. J.-L. Virelizier, Role of macrophages and interferon in natural resistance to mouse hepatitis virus infection, Curr. Top. Microbiol. Immunol. 92: 53 (1981).

    PubMed  CAS  Google Scholar 

  40. C. Lopez, Genetics of natural resistance to herpesvirus infection in mice, Nature 258: 152 (1975).

    Article  PubMed  CAS  Google Scholar 

  41. S. C. Mogensen, Genetics of macrophage-controlled resistance to hepatitis induced by herpes simplex virus type 2 in mice, Infect. Immun. 17: 268 (1977b).

    PubMed  CAS  Google Scholar 

  42. D. Armerding, P. Mayer, M. Scriba, A. Hren, and H. Rossiter, In vivo modulation of macrophage functions by herpes simplex virus type 2 in resistant and sensitive inbred mouse strains, Immunobiol. 160:217(1981)

    CAS  Google Scholar 

  43. C. Lopez, Resistance to herpes simplex virus-type 1 (HSV-1), Curr. Top. Microbiol. Immunol. 92: 15 (1981).

    PubMed  CAS  Google Scholar 

  44. C. Lopez, D. Kirkpatrick, P. A. Fitzgerald, C. Y. Ching, R. Pahwa, R. A. Good, and E. M. Smithwick, Studies of the cell-lineage of the effector cells that spontaneously lyse HSV-1 infected fibroblasts [NK(HSV-l)], J. Immunol. 129: 824 (1982).

    PubMed  CAS  Google Scholar 

  45. R. Zawatzky, H. Kirchner, J. DeMaeyer-Guignard, and E. DeMaeyer, An X- linked locus influences the amount of circulating interferon induced in the mouse by herpes simplex virus type 1, J. Gen. Virol. 63: 325 (1982).

    Article  PubMed  CAS  Google Scholar 

  46. E. B. Pederson, S. Haahr, and S. C. Mogensen, X-linked resistance of mice to high doses of herpes simplex virus type 2 correlates with early interferon production, Infect. Immun. 42: 740 (1983).

    Google Scholar 

  47. M. K. Selgrade and J. E. Osborn, Role of macrophages in resistance to murine cytomegalovirus, Infect. Immun. 10: 1383 (1974).

    PubMed  CAS  Google Scholar 

  48. K. Haffer, M. Sevoian, and M. Wilder, The role of the macrophage in Marek’s disease: in vitro and in vivo studies, Int. J. Cancer, 23: 648, (1979).

    Article  PubMed  CAS  Google Scholar 

  49. A. J. Forman, L. A. Babiuk, V. Misra, and F. Baldwin, Susceptibility of bovine macrophages to infectious bovine rhinotracheitis virus infection, Infect. Immun. 35: 1048 (1982).

    PubMed  CAS  Google Scholar 

  50. J. Lindenmann, E. Deuel, S. Fanconi, and O. Haller, Inborn resistance of mice to myxoviruses: macrophages express phenotype in vitro, J. Exp. Med. 147: 531 (1978).

    Article  PubMed  CAS  Google Scholar 

  51. O. Haller, H. Arnheiter, J. Lindenmann, Natural, genetically determined resistance toward influenza virus in hemopoietic mouse chimeras. Role of mononuclear phagocytes, J. Exp. Med. 150: 117 (1979).

    Article  PubMed  CAS  Google Scholar 

  52. O. Haller, H. Arnheiter, J. Lindenmann, and I. Gresser, Host gene influences sensitivity to interferon action selectively for influenza virus, Nature 283: 660 (1980).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Mogensen, S.C. (1986). Macrophages and Genetically Determined Natural Resistance to Virus Infections. In: Szentivanyi, A., Friedman, H. (eds) Viruses, Immunity, and Immunodeficiency. University of South Florida International Biomedical Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2185-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2185-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9286-9

  • Online ISBN: 978-1-4613-2185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics