Skip to main content

Role of Calcium Ions in Learning

  • Chapter
Neural Mechanisms of Conditioning

Abstract

The title of this chapter may well seem inappropriate. No one will dispute the basic premise: taking part in so many membrane and internal cellular processes (Rasmussen, 1981; Rasmussen and Barrett, 1984), Ca2+ can hardly fail to be involved in learning. On the other hand, the title seems to imply a particular role, both essential and well defined. To claim that such a role has been identified would be patently untrue. Nevertheless, it may be useful to review briefly the facilitatory processes—not dependent on structural changes, such as sprouting of new connections—that have been recognized in the CNS and to discuss ways in which Ca2+ may be of importance. Special reference will be made to the hippocampus, where direct measurements of Ca2+ levels have recently revealed some remarkable changes during “burst” activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, P. R. and Brown, D. A., 1980, Luteinizing hormone-releasing factor and muscarinic agonists act on the same voltage-sensitive K+ current in bullfrog sympathetic neurones, Br. J. Pharmacol. 68:353–355.

    PubMed  CAS  Google Scholar 

  • Alkon, D. A., 1982, A biophysical basis for molluscan associative learning, in: Conditioning (C. D. Woody, ed.) Plenum Press, New York, pp. 147–170.

    Google Scholar 

  • Atwood, H. L., Charlton, M. P., and Thompson, C. S., 1983, Neuromuscular transmission in crustaceans is enhanced by a sodium ionophore, monensin, and by prolonged stimulation, J. Physiol. (London) 335:179–195.

    CAS  Google Scholar 

  • Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, Progr. Biophys. Mol. Biol. 24:177–223.

    Article  CAS  Google Scholar 

  • Benardo, L. S. and Prince, D. A., 1982, Cholinergic pharmacology of mammalian hippocampal py-ramidal cells, Neuroscience 7:1703–1712.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., Krnjevic, K., Reinhardt, W., and Ropert, N., 1981, Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus, Neuroscience 6:2475–2484.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. V. L., 1977, Electrical transmission: A functional analysis and comparison to chemical transmission, in: Handbook of Physiology, Section 1: The Nervous System, Vol. 1, Part 1 (J. M. Brookhart, V. B. Mountcastle, E. R. Kandel, and S. R. Geiger, eds.), American Physiological Society, Bethesda, Maryland, pp. 357–416.

    Google Scholar 

  • Benninger, C., Kadis, J., and Prince, D. A., 1980, Extracellular calcium and potassium changes in hippocampal slices, Brain Res. 187:165–182.

    Article  PubMed  CAS  Google Scholar 

  • Blinks, J. R., Wier, W. G., Hess, P., and Prendergast, F. G. 1982, Measurement of Ca2+ concentrations in living cells, Progr. Biophys, Mol. Biol. 40:1–114.

    CAS  Google Scholar 

  • Bowery, N. G., Price, G. W., Hudson, A. L., Hill, D. R., Wilkin, G. P., and Turnbull, M. J., 1984, GAB A receptor multiplicity. Visualization of different receptor types in the mammalian CNS, Neuropharmacology 23:219–231.

    CAS  Google Scholar 

  • Buzsaki, G., Leung, L.-W. S., and Vanderwolf, C. H., 1983, Cellular bases of hippocampal EEG in the behaving rat, Brain Res. Rev. 6:139–171.

    Google Scholar 

  • Cheung, W. Y., 1982, Role of calmodulin in brain function, Progr. Brain Res. 56:237–253.

    Article  CAS  Google Scholar 

  • Cole, A. E., and Nicoll, R. A., 1984, Characterization of a slow cholinergic post-synaptic potential recorded in vitro from rat hippocampal pyramidal cells, J. Physiol. (London) 352:173–188.

    CAS  Google Scholar 

  • Dalkara, T., Ropert, N., Yim, C. Y., and Krnjevic, K., 1983, Mechanisms of facilitation of antidromic population spikes by iontophoretic applications of acetylcholine into hippocampal CA3 region in situ, Soc. Neurosci. Ahst. 9:968.

    Google Scholar 

  • Dolphin, A. C., 1983, The excitatory amino-acid antagonist 7-D-glutamyl-glycine masks rather than prevents long term potentiation of the perforant path, Neuroscience 10:377–383.

    Article  PubMed  CAS  Google Scholar 

  • Dudek, F. E., Andrew, R. D., MacVicar, B. A., Snow, R. W., and Taylor, C. P., 1983, Recent evidence for and possible significance of gap junctions and electrotonic synapses in the mammalian brain, in: Basic Mechanisms of Neuronal Hyperexcitability (H. H. Jasper and N. M. van Gelder, eds.), Alan R. Liss, New York, pp. 31–73.

    Google Scholar 

  • Dunlap, K. and Fischbach, G. D., 1978, Neurotransmitters decrease the calcium component of sensory nerve action potentials, Nature 276:837–839.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie, T., Mueller, A., Palmer, M., Stewart, J., and Hoffer, B., 1980, Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. I. Effects on pyramidal cell activity, Brain Res. 184:311–330.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C., 1964, The Physiology of Synapses, Springer Verlag, Berlin, 316pp.

    Book  Google Scholar 

  • Erulkar, S. D. and Rahamimoff, R., 1978, The role of calcium ions in tetanic and post-tetanic increase of miniature end-plate potential frequency, J. Physiol. (London) 278; 501–511.

    CAS  Google Scholar 

  • Haas, H. L., 1982, Cholinergic disinhibition in hippocampal slices of the rat, Brain Res. 233:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H. L., Felix, D., Celio, M. R., and Inagami, T., 1980, Angiotensin II in the hippocampus. A histochemical and electrophysiological study, Experientia 36:1394–1395.

    CAS  Google Scholar 

  • Haefely, W., Pole, P., Pieri, L., Schaffner, R., and Laurent, J.-P., 1983, Neuropharmacology of benzodiazepines: Synaptic mechanisms and neural basis of action, in: The Benzodiazepines: From Molecular Biology to Clinical Practice (E. Costa, ed.), Raven Press, New York, pp. 21–66.

    Google Scholar 

  • Halliwell, J. V. and Adams, P. R., 1982, Voltage clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250:71–92.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E. R., Abrams, T., Bernier, L., Carew, T. J., Hawkins, R. D., and Schwartz, J. H., 1983, Classical conditioning and sensitization share aspects of the same molecular cascade in Aplysia, Cold Spring Harbor Symp. Quant. Biol. 48:821–830.

    CAS  Google Scholar 

  • Korn, H. and Faber, D. S., 1980, Electrical field effect interactions in the vertebrate brain, Trends Neurosci. 3:6–9.

    Google Scholar 

  • Krnjevic, K., 1977, Effects of substance P on central neurons in cats, in: Substance P (U. S. von Euler, and B. Pernow, eds.), Raven Press, New York, pp. 217–230.

    Google Scholar 

  • Krnjevic, K., Morris, M. E., and Reiffenstein, R. J., 1980, Changes in extracellular Ca2+ and K+ activity accompanying hippocampal discharges, Can J. Physiol. Pharmacol. 58:579–583.

    Article  CAS  Google Scholar 

  • Krnjevic, K., Reiffenstein, R. J., and Ropert, N., 1981, Disinhibitory action of acetylcholine in the rat’s hippocampus: Extracellular observations, Neuroscience 12:2465–2474.

    Article  Google Scholar 

  • Krnjevic, K., Morris, M. E., and Reiffenstein, R. J., 1982a, Stimulation-evoked changes in extracellular K+ and Ca2+ in pyramidal layers of the rat’s hippocampus, Can. J. Physiol. Pharmacol. 60:1643–1657.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic, K., Morris, M. E. Reiffenstein, R. J., and Ropert, N., 1982b, Depth distribution and mech-anism of changes in extracellular K+ and Ca2+ concentrations in the hippocampus, Can J. Physiol. Pharmacol. 60:1658–1671.

    Article  CAS  Google Scholar 

  • Krnjevic, K., Morris, M. E., and MacDonald, J. F., 1983, Free Ca2+ inside cat motoneurons at rest and during activity, Can. J. Physiol. Pharmacol. 61:Axiii-Axiv.

    Google Scholar 

  • Krnjevic, K., Pumain, R., and Renaud, L., 1971, The mechanism of excitation by acetylcholine in the cerebral cortex, J. Physiol. (London) 215:247–268.

    CAS  Google Scholar 

  • Lynch, G. and Baudry, M., 1984, The biochemistry of memory: A new and specific hypothesis, Science 224:1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Madison, D. V. and Nicoll, R. A., 1982, Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus, Nature 299:636–638.

    Article  PubMed  CAS  Google Scholar 

  • Morris, M. E., Krnjevic, K., and MacDonald, J. F., 1985, Changes in intracellular free Ca ion concentration evoked by electrical activity in cat spinal neurons in situ, Neuroscience 14:563–580.

    Article  PubMed  CAS  Google Scholar 

  • Morris, M. E., Krnjevic, K., and Ropert, N., 1983, Changes in free Ca2+ recorded inside hippocampal pyramidal neurons in response to fimbrial stimulation. Soc. Neurosci. Abst. 9:395.

    Google Scholar 

  • Murase, K. and Randic, M., 1984, Actions of substance P on rat spinal dorsal horn neurones, J. Physiol. (London) 346:203–217.

    CAS  Google Scholar 

  • Nestler, E. J. and Greengard, P., 1983, Protein phosphorylation in the brain, Nature 305:583–588.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, C., 1980, Modulation of extracellular calcium and its functional implications, Fed. Proc. 39:1519–1523.

    PubMed  CAS  Google Scholar 

  • Nowak, L. M., and MacDonald, R. L., 1982, Substance P: Ionic basis for depolarizing responses of mouse spinal cord neurons in cell culture, J. Neurosci. 2:1119–1128.

    PubMed  CAS  Google Scholar 

  • Ranck, J. B., 1973, Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Part I. Behavioural correlates and firing repertoires, Exp. Neurol. 41:461–531.

    Article  PubMed  Google Scholar 

  • Rasmussen, H., 1981, Calcium and cAMP as Synarchic Messengers, John Wiley & Sons, New York, 370 pp.

    Google Scholar 

  • Rasmussen, H. and Barrett, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64:938–984.

    PubMed  CAS  Google Scholar 

  • Rose, B. and Loewenstein, W. R., 1976, Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin, J. Membrane Biol. 28:87–119.

    Article  CAS  Google Scholar 

  • Shashoua, V. E., 1982, The role of specific brain proteins in long-term memory formation, in: Changing Concepts of the Nervous System (A. R. Morrison and P. L. Strick, eds.), Academic Press, New York, pp. 681–716.

    Google Scholar 

  • Shimahara, T. and Tauc, L., 1975, Heterosynaptic facilitation in the giant cell of Aplysia, J. Physiol. (London) 247:321–341.

    CAS  Google Scholar 

  • Skrede, K. K. and Malthe-Srenssen, D., 1981, Increased resting and evoked release of transmitter following repetitive electrical tetanization in hippocampus: A biochemical correlate to long-lasting synaptic potentiation, Brain Res. 208:436–441.

    Article  PubMed  CAS  Google Scholar 

  • Stinnakre, J. and Tauc, L., 1973, Calcium influx in active Aplysia neurones detected by injected aequorin, Nature New Biol. 242:113–115.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. P. and Dudek, F. E., 1982, Synchronous neural after discharges in rat hippocampal slices without active chemical synapses, Science 218:810–812.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. P. and Dudek, F. E., 1984, Excitation of hippocampal pyramidal cells by an electrical field effect, J. Neurophysiol. 52:126–142.

    PubMed  CAS  Google Scholar 

  • Taylor, C. P., Krnjevic, K., and Ropert, N., 1984, Facilitation of hippocampal CA3 pyramidal cell firing by electrical fields generated antidromically, Neuroscience 11:101–109.

    Article  PubMed  CAS  Google Scholar 

  • Turin, L. and Warner, A., 1977, Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo, Nature 270:56–57.

    Article  PubMed  CAS  Google Scholar 

  • Vandermaelen, C. P. and Aghajanian, G. K., 1982, Serotonin-induced depolarization of rat facial motoneurones in vivo: comparison with amino acid transmitters, Brain Res. 239:139–152.

    Article  PubMed  CAS  Google Scholar 

  • Woody, C. D., Swartz, B. E., and Gruen, E., 1978, Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats, Brain Res. 158:373–395.

    Article  PubMed  CAS  Google Scholar 

  • Zieglgansberger, W., French, E. D., Siggins, G. R., and Bloom, F. E., 1979, Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons, Science 205:415–417.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Krnjević, K. (1986). Role of Calcium Ions in Learning. In: Alkon, D.L., Woody, C.D. (eds) Neural Mechanisms of Conditioning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2115-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2115-6_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9251-7

  • Online ISBN: 978-1-4613-2115-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics