Skip to main content

Noise in Biomolecular Systems

  • Chapter
Modern Bioelectrochemistry

Abstract

The principle of electrical spectrography and its measurement system is discussed. The phenomenon of noise in electrolytes and interfaces receives attention. Noise spectrography is found to have applications in some biomolecular systems, viz., DNA helix-to-coil transition, thermal transconformation, and “salt-free” premelting effects. Noise conductivity emission spectra of collagen solutions gave information on permanent dipole fluctuations and hydrodynamic properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. E. Green and M. Yafuso, “A Study of the Noise Generated During Ion Transport Across Membranes,”J Phys. Chem. 72, 4072–4078 (1968)

    Article  CAS  Google Scholar 

  2. M. E. Green, “Noise Spectra Across an Anion Membrane,” J. Phys. Chem. 78, 761–762 (1974)

    Article  Google Scholar 

  3. D. L. Dorset and H. M. Fishman,“Excess Electrical Noise During Current Flow Through Porous Membranes Separating Ionic Solutions,”J. Membr Biol 21, 291–309 (1975)

    Article  CAS  Google Scholar 

  4. P. G. Saffman and M. Delbrück, “Brownian Motion in Biological Membranes,” Proc. Natl. Acad. Sci. USA 72, 3111–3113 (1975)

    Article  CAS  Google Scholar 

  5. B. Neumcke, “1/fNoise in Membranes,” Biophys. Struct. Mechanism 4, 179–199 (1978)

    Article  CAS  Google Scholar 

  6. E. Frehland, “Current Noise Around Steady States in Discrete Transport Systems, ” Biophys. Chem. 8, 255–265 (1978)

    Article  CAS  Google Scholar 

  7. L. J. Bruner and J. E. Hall, “Autocorrelation Analysis of Hydrophobic Ion Current Noise in Lipid Bilayer Membranes,” Biophys. J. 28, 511–514 (1979)

    Article  CAS  Google Scholar 

  8. E. Frehland,“Current Fluctuations in Discrete Transport Systems far from Equilibrium. Breakdown of the Fluctuation Dissipation Theorem,” Biophys. Chem. 12, 63–71 (1980)

    Article  CAS  Google Scholar 

  9. P. C. Jordan, “Current Noise in Transport of Hydrophobic Ions Through Lipid Bilayer Membranes Including Diffusion Polarization in the Aqueous Phase,” Biophys. Chem. 12, 1–11 (1980)

    Article  CAS  Google Scholar 

  10. Y. Fang, Q. Li, and M. E. Green, “Noise Spectra of Transport at an Anion Membrane- Solution Interface,” J. Colloid Interface Sci. 86, 185–190 (1982)

    Article  CAS  Google Scholar 

  11. Y. Fang, Q. Li, and M. E. Green, “Noise Spectra of Sodium and Hydrogen Ion Transport at a Cation Membrane-Solution Interface,” J. Colloid Interface Sci. 88, 214–220 (1982)

    Article  CAS  Google Scholar 

  12. Y. Chen, “Differentiation Between Equilibrium and Nonequilibrium Kinetic Systems by Noise Analysis,” Biophys. J. 21, 279–285 (1978)

    Article  CAS  Google Scholar 

  13. A. A. Verveen and H. E. Derksen, “Fluctuation Phenomena in Nerve Membrane,” Proc. IEEE 56, 906–916 (1968)

    Article  Google Scholar 

  14. D. J. M. Poussart, “Nerve Membrane Current Noise: Direct Measurements Under Voltage Clamp,” Proc. Natl. Acad. Sci. USA 64, 95–99 (1969)

    Article  CAS  Google Scholar 

  15. D. J. M. Poussart, “Membrane Current Noise in Lobster Axon Under Voltage Clamp,” Biophys. J. 11, 211–234 (1971)

    Article  CAS  Google Scholar 

  16. H. Lecar and R. Nossal, “Theory of Threshold Fluctuations in Nerves I. Relationships Between Electrical Noise and Fluctuations in Axon Firing,” Biophys. J. 11, 1048–1067 (1971); “II. Analysis of Various Sources of Membrane Noise,” Biophys. J. 11, 1068–1084 (1971)

    Article  CAS  Google Scholar 

  17. E. Wanke, L. J. De Felice, and F. Conti, “Voltage Noise, Current Noise and Impedance in Space Clamped Squid Giant Axon,” Pflügers Arch 347, 63–74 (1974)

    Article  CAS  Google Scholar 

  18. H. Fishman, “Patch Voltage Clamp of Squid Axon Membrane,” J. Membr. Biol. 24, 265–277 (1975)

    Article  CAS  Google Scholar 

  19. H. Fishman, D. J. M. Poussart, and L. E. Moore, “Noise Measurements in Squid Axon Membrane,” J. Membr. Biol. 24, 281–304 (1975)

    Article  CAS  Google Scholar 

  20. J. R. Clay and M. F. Shlesinger, “Theoretical Model of the Ionic Mechanism of 1/fNoise in Nerve Membrane,” Biophys. J. 16, 121–136 (1976)

    Article  CAS  Google Scholar 

  21. F. Conti, L. J. De Felice, and E. Wanke, “Potassium and Sodium Ion Current Noise in the Membrane of Squid Giant Axon,” J. Physiol. 248, 45–82 (1975).

    CAS  Google Scholar 

  22. H. M. Fishman, L. E. Moore, and D. J. M. Poussart, “Potassium-Ion Conduction Noise in Squid Axon Membrane,” J. Membr. Biol. 24, 305–328 (1975). 427

    Article  CAS  Google Scholar 

  23. F. Conti, B. Neumcke, W. Nonner, and R. Stämpfli, “Conductance Fluctuations from the Inactivation Process of Sodium Channels in Myelinated Nerve Fibres,” J. Physiol. 308, 217–239 (1980)

    CAS  Google Scholar 

  24. F. J. Sigworth, “Interpreting Power Spectra from Nonstationnary Membrane Current Fluctuations,” Biophys. J. 35, 289–300 (1981)

    Article  CAS  Google Scholar 

  25. A. A. Verveen and L. J. De Felice, “Membrane Noise,”Progr. Biophys. Mol. Biol 28189–265(1974)

    Article  CAS  Google Scholar 

  26. P. Laüger, R. Benz, G. Stark, E. Bamberg, P. C. Jordan, A. Fahr, and W. Brock, “Relaxation Studies of Ion Transport Systems in Lipid Bilayer Membranes,” Quart. Rev. Biophys. 14, 513–598 (1981)

    Article  Google Scholar 

  27. L. J. De Felice, Introduction to Membrane Noise, Plenum Press, New York (1981)

    Google Scholar 

  28. F. Conti and E. Wanke, “Channel Noise in Nerve Membranes and Lipid Bilayers,” Quart. Rev. Biophys. 8, 451–506 (1975)

    Article  CAS  Google Scholar 

  29. Y. Chen, in Advances in Chemical Physics (I. Prigogine and S. A. Rice, eds.), Vol. XXXVII, pp. 67–97, Wiley, New York (1978).

    Chapter  Google Scholar 

  30. A. Papoulis, Probability, Random Variables and Stochastic Processes, Mc-Graw Hill, New York (1965)

    Google Scholar 

  31. G. R. Cooper and D. C. McGillem, Methods of Signal and System Analysis, Holt, Rinehart and Winston, New York (1967).

    Google Scholar 

  32. H. Kranck, doctoral thesis, Nice University (1979)

    Google Scholar 

  33. J. B. Johnson, “Thermal Agitation of Electricity in Conductors,”Phys. Rev. 32, 97–109 (1928)

    Article  CAS  Google Scholar 

  34. H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Phys. Rev. 32, 110–113 (1928)

    Article  CAS  Google Scholar 

  35. D. Vasilescu, M. Teboul, H. Kranck, and F. Gutmann, “Electrical Noise in Aqueous 1.1 Electrolytes,” Electrochim. Acta 19, 181–186 (1974)

    Article  CAS  Google Scholar 

  36. D. Vasilescu, “Sur une notation rationalisée des paramètres caractéristiques d’un élec- trolyte 1.1 en solution,” J. Chim. Phys. 7–8, 1131–1132 (1974)

    Google Scholar 

  37. L. Landau and F. Lifchitz, Physique Statistique, Mir, Moscow (1976), p. 349

    Google Scholar 

  38. R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes.” I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn 12, 570–586 (1957)

    Article  Google Scholar 

  39. H. Kranck, D. Vasilescu, C. Bezot, G. Bossis, M. Teboul, and F. Gutmann, “Bruit électrique dans les électrolytes 1.1 aqueux. 2. Cas des fortes concentrations. Bruit d’interface,” Electrochim. Acta 23, 891–897 (1978)

    Article  CAS  Google Scholar 

  40. Y-C. Chiu and R. M. Fuoss, “Conductance of the Alkali Halides.” XII. Sodium and Potassium Chlorides in Water at 25°, J. Phys. Chem. 72, 4123–129 (1968).

    Article  CAS  Google Scholar 

  41. J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Vol. 2, Plenum Press, New York (1970)

    Google Scholar 

  42. H. Kranck, C. Bezot, M. Teboul, and D. Vasilescu, “Bruit électrique d’une membrane au Collodion—Effets d’interface,” Electrochim. Acta 24, 939–947 (1979)

    Article  CAS  Google Scholar 

  43. J. J. Brophy and S. L. Webb, “Critical Fluctuations in Triglycine Sulfate,” Phys. Rev. 128, 584–588 (1962)

    Article  CAS  Google Scholar 

  44. H. P. Schwan, “Alternating Current Electrode Polarization,” Biophysik 3, 181–201 (1966)

    Article  CAS  Google Scholar 

  45. F. N. Hooge, “1/f Noise in the Conductance of Ions in Aqueous Solutions,” Phys. Lett. 33, 169–170 (1970)

    Article  CAS  Google Scholar 

  46. F. N. Hooge, “Discussion of Recent Experiment in l/f Noise,” Physica 60, 130–144 (1972)

    Article  Google Scholar 

  47. A. Cyrot, doctoral thesis, Université Pierre et Marie Curie, Paris (1978)

    Google Scholar 

  48. L. J. De Felice and J. P. L. M. Michalides, “Electrical Noise from Synthetic Membranes,” J. Membr. Biol. 9, 261–290 (1972). 428

    Article  Google Scholar 

  49. H. P. Gregor and K. Sollner, “Improved Methods of Preparation of”Permselective“Collodion Membranes Combining Extreme Ionic Selectivity with High Permeability,” J. Phys. Chem. Ithaca 50, 53–70 (1946).Noise in Biomolecular Systems

    Article  CAS  Google Scholar 

  50. Y. Gur, I. Ravina, and A. J. Babchin, “A Numerical Method for Solving a Generalised Poisson-Boltzmann Equation,” J. Colloid Interface Sci. 64, 326–332 (1978)

    Article  CAS  Google Scholar 

  51. Y. Gur, I. Ravina, and A. J. Babchin, “The Poisson-Boltzmann Equation Including Hydratation Forces,” J. Colloid Interface Sci. 64, 333–341 (1978)

    Article  CAS  Google Scholar 

  52. D. Vasilescu, H. Grassi, and M. A. Rix-Montel, in Polyelectrolytes and their Applications ( A. Rembaum and E. Selegny, eds.), Reidel, Dordrecht (1975), Vol. 2, pp. 197–216

    Google Scholar 

  53. G. S. Manning, “Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions.” I. “Colligative Properties,” J. Chem. Phys. 51, 924–933 (1969); II. “Self-Dif- fusion of the Small Ions,” J. Chem. Phys. 51, 934–938 (1969).

    Article  Google Scholar 

  54. M. T. Record, C. F. Anderson, and T. M. Lohman, “Thermodynamic Analysis of Ion Effects on the Binding and Conformational Equilibria of Proteins and Nucleic Acids: The Roles of Ion Association or Release, Screening, and Ion Effects on Water Activity,” Quart. Rev. Biophys. 11, 103–178 (1978)

    Article  CAS  Google Scholar 

  55. D. Vasilescu and M. A. Rix-Montel, “Mesure directe de l’éjection de cations Na + hors des sites phosphates lors de la dénaturation thermique du DNA,” Biochim. Biophys. Acta 199, 553–555 (1970).

    CAS  Google Scholar 

  56. M. A. Rix-Montel, H. Grassi, and D. Vasilescu, “Experimental Studies of Thermal Dénaturation of the Na-DNA System with Respect to Manning’s Model,” Biophys. Chem. 2, 278–289 (1974)

    Article  CAS  Google Scholar 

  57. B. G. Archer, C. L. Craney, and H. Krakauer, “The Interaction of Na Ions with Synthetic Polynucleotides,” Biopolymers 11, 781–809 (1972)

    Article  CAS  Google Scholar 

  58. D. Vasilescu, M. Teboul, R. Viani, and H. Grassi,“Etude expérimentale du bruit de fond dans des solutions de DNA,” C. R. Acad. Sci. Paris B2661005–1008(1968)

    Google Scholar 

  59. R. Viani, 3d cycle doctoral thesis, Nice University (1969)

    Google Scholar 

  60. B. Camous, 3d cycle doctoral thesis, Marseille University (1972)

    Google Scholar 

  61. D. Vasilescu, M. Teboul, H. Kranck, and B. Camous, “Showing up the Thermal Transconformation of Na-DNA in Solution by Noise Spectrography,” Biopolymers 12, 341–352 (1973)

    Article  CAS  Google Scholar 

  62. H. Grassi, M. A. Rix-Montel, H. Kranck, and D. Vasilescu, “Premelting Effects in DNA Under Salt-Free Conditions,” Biopolymers 14, 2525–2535 (1975)

    Article  CAS  Google Scholar 

  63. H. Kranck, C. Bezot, M. A. Rix-Montel, and D. Vasilescu, “Noise Conductance of DNA Under Salt-Free Conditions,” Biopolymers 15, 599–603 (1976)

    Article  CAS  Google Scholar 

  64. F. Oosawa, “Counterion Fluctuation and Dielectric Dispersion in Linear Polyelec-trolytes,” Biopolymers 9, 677–689 (1970)

    Article  CAS  Google Scholar 

  65. J. Kumamoto, J. Raison, and J. Lyons, “Temperature “Breaks” in Arrhenius Plots: A Thermodynamic Consequence of a Phase Change,” J. Theor. Biol. 31, 47–51 (1971).

    Google Scholar 

  66. D. N. Goswami and N. N. Das Gupta, “On the Dielectric Polarization of DNA,” Biopolymers 13, 1549–1556 (1974).

    Article  CAS  Google Scholar 

  67. G. N. Ramachandran and C. Ramakrishnan, in Biochemistry of Collagen, ( G. N. Ramachandran and A. H. Reddi, eds.), Plenum Press, New York (1976), pp. 45–84

    Google Scholar 

  68. K. Yoshioka and C. T. O’Konski, “Dipole Moment, Polarizability and Optical Anisotropy Factor in Collagen in Solution from Electric Birefringence,” Biopolymers 4, 499–507 (1966)

    Article  CAS  Google Scholar 

  69. J. C. Bernengo, B. Roux, and D. Herbage, “Electrical Birefringence Study of Monodisperse Collagen Solutions,” Biopolymers 13, 641–647 (1974).

    Article  CAS  Google Scholar 

  70. J. C. Bernengo, B. Roux, and D. Herbage, in Electro-Optics and Dielectrics of Macromolecules and Colloids (B. R. Jennings, ed.), Plenum Press, New York (1979), pp. 219–230. 429

    Google Scholar 

  71. M. Hanss, D. Herbage, and P. Comte, “Propriétés électriques du collagène en haute fréquence,”J. Chim. Phys. 65, 176–181 (1968)

    CAS  Google Scholar 

  72. H. Kranck, J. C. Bernengo, and D. Vasilescu, Appi Phys. Commun. 2(3), 189–202 (1982–83).

    Google Scholar 

  73. D. Herbage, doctoral thesis, Lyon (1972)

    Google Scholar 

  74. L. Davis, “Spontaneous Polarization Noise in Polar Dielectrics,” J. Appi Phys. 35, 2004–2010 (1964)

    Article  Google Scholar 

  75. Vera V. Daniel, Dielectric Relaxation, Academic, New York (1967), pp. 46–64

    Google Scholar 

  76. J. Le Bot, E. Riaux, G. Grosvald, and R. Ollivier, “Analyse du spectre d’émission d’un diélectrique polaire,” J. Phys. (Paris) 28, 47–50 (1967).

    Google Scholar 

  77. B. K. P. Scaife, in Complex Permittivity (B. K. P. Scaiffe, compiler); The English University Press, London (1971), pp. 23–31

    Google Scholar 

  78. F. Perrin, “Mouvement brownien d’un ellipsoide(I)Dispersion diélectrique pour des molécules ellipsoidales,”J. Phys. Radium 5497–511 (1934)

    Article  CAS  Google Scholar 

  79. G Tanford, Physical Chemistry of Macromolecules, Wiley, New York (1961), pp. 432–437

    Google Scholar 

  80. J. M. Burgers, Verhandel Koninkl. Ned. Akad. Wetenschap 16, 113–119 (1938)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Vasilescu, D., Kranck, H. (1986). Noise in Biomolecular Systems. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics