Skip to main content

Fuse Opening Switches for Pulse Power Applications

  • Chapter
Opening Switches

Part of the book series: Advances in Pulsed Power Technology ((APUT,volume 1))

Abstract

The high power fuse represents a practical opening switch concept that is routinely used in circuits where currents can exceed 25 Megamps1 and in which the time scales range from 100–s of microseconds2 down to 10–s of nanoseconds.3 The fuse is an electrical conductor which experiences a very rapid rise in resistance as a result of ohmic heating. The heating is driven by the current which the fuse is intended to interrupt, and this heating leads to melting and eventually to vaporization of the conductor. The fuse is, thus, fundamentally a very reproducible one-shot device, and may, within limits, be thought of as totally passive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Reinovsky, W.L. Baker, Y.G. Chen, J. Holmes, and E.A.Lopez, Shiva Star Inductive Pulse Compression System The 4th IEEE International Conference on Pulsed Power, IEEE Cat. No. 83CH1908–3, NY (1983).

    Google Scholar 

  2. D. Conte, R.D. Ford, W.H. Lupton, J.D. Shipman, P. Turchi, and I.M. Vitkovitsky, Inductive Charging of Pulse Lines in 0.1 to 1.0 MJ Range, Using Foil Fuses Staged with Explosively Actuated Switches, NRL Report 3742 (1978).

    Google Scholar 

  3. Y.A. Kotov, B.M. Koval’chuk, N.G. Kolganov, G.A. Mesyats, V.S. Sedoi, and A.L. Ipatov, High Current Nano-Second Pulse Electron Accelerator with Inductive Shaping Element, Sov Tech Phys Lett, 3:9 (1977).

    Google Scholar 

  4. Ch. Maisonnier, J.G. Linhart, and C. Gourlan, Rapid Transfer of Magnetic Energy by Means of Exploding Foils, Rev Sci Instrm, 37:10 (1966).

    Google Scholar 

  5. J.N. DiMarco, and L.C. Burkhardt, Characteristics of a Magnetic Energy Storage System Using Exploding Foils, J. Appl. Phys., 41:9 (1970).

    Article  Google Scholar 

  6. T.J. Tucker, and R.P. Toth, A Computer Code for Predicting the Behavior of Electrical Circuits Containing Exploding Wire Elements, Sandia National Lab Report 75–0041 (1975).

    Google Scholar 

  7. L.C. Burkhardt, R. Dike, J.N. DiMarco, J.A. Phillips, R. Haarman, and A.E. Schofield, The Magnetic Energy Storage System Used in ZT-1, Proceedings of Int’l Conference on Energy Storage, Compression and Switching (1974).

    Google Scholar 

  8. V.A. Burtsev, A. B. Berezin, A.P. Zhukov, V.A. Kubasov, B.V. Lyvublin, V.N. Litunovskij, V.A. Ovsyannikov, A.N. Popytaev, A.G. Smirnov, V.G. Smirnov, V.P. Fedyakov, and V.P. Fedyakova, Heating of a Dense Theta Pinch with Strong Fast-Rising Magnetic Fields, Nuclear Fusion, 17:5 (1977).

    Article  Google Scholar 

  9. D. Conte, R.D. Ford, W.H. Lupton, and I.M., Vitkovitsky, Trident -a Megavolt Pulse Generator Using Inductive Energy Storage, Proc. 2nd IEEE Int. Pulsed Power Conference, IEEE Cat. No. 79–90330, NY (1979).

    Google Scholar 

  10. H.C. Early, and F.J. Martin, Methods of Producing a Fast Current Rise from Energy Storage Capacitors, Rev Sci Instrum, 36:7 (1965).

    Article  Google Scholar 

  11. Y.A. Kotov, N.G. Kolganov, V.S. Sedoi, B.M. Koval’chuk, and G.A. Mesyats, Nanosecond Pulse Generators with Inductive Storage, 1st IEEE Int’l Pulsed Power Conf., IEEE Cat. No. 76CH1197–8 (1976).

    Google Scholar 

  12. R.E. Reinovsky, D.L.Smith, W.L. Baker, J.H. Degnan, R.P. Henderson, B.J. Kohn, D.A. Kloc, and N.F. Roderick, Inductive Store Pulse Compression System for Driving High Speed Plasma Implosions, IEEE Trans Plasma Sci, PS-10:3 (1982).

    Google Scholar 

  13. A.P. Baikov, L.S. Gerasimov, and A.M. Iskol’dskii, Electrical Conductivity of an Aluminum Foil in an Electrical Explosion, Sov Phys -Tech Phys, 20:1 (1975).

    Google Scholar 

  14. J.C. Bueck, and R.E. Reinovsky, The Effects of Cryogenic Initial Temperature on Aluminum and Copper Electrically Exploded Foil Fuses, 4th IEEE Pulsed Power Conference, IEEE Cat. No. 83CH1908–3, 1983.

    Google Scholar 

  15. J.C. Bueck, and R.E. Reinovsky, High Performance Foil Opening Switches, 5th IEEE Pulsed Power Conference, IEEE Cat. No. 85C2121–2 (1985).

    Google Scholar 

  16. D. Conte, M. Friedman, and M. Ury, A Method for Enhancing Exploding Aluminum Foil Fuses for Inductive Storage Switching, 1st IEEE Int’l Pulsed Power Conference, IEEE Cat. No. 76CH1197–8 (1976).

    Google Scholar 

  17. W.F. McCullough, Private Communication (1983).

    Google Scholar 

  18. .18. W.F. McCullough, One Dimensional Magnetohydrodynamic Simulations of Exploding Foil Opening Switches, 5th IEEE Pulsed Power Conference, IEEE Cat. No. 85C2121–2, (1985).

    Google Scholar 

  19. I.R. Lindemuth, J.H. Brownell, A.E. Greene, G.H. Nickel, T.A.Oliphant, and D.L. Weiss, A Computational Model of Exploding Metallic Fuses for Multimegajoule Switching, J. Appl. Phys., 57:9 (1985).

    Article  Google Scholar 

  20. V.A. Burtsev, V.N. Litunovskii, and V.F. Prokopenko, Electrical Explosion of Foils, I, Sov Phys -Tech Phys, 22:8 (1977).

    Google Scholar 

  21. V.A. Burtsev, V.N. Litunovskii, and V.F. Prokopenko, Electrical Explosion of Foils, II, Sov Phys -Tech Sci, 22:8 (1977).

    Google Scholar 

  22. J.H. Goforth, I.R. Lindemuth, H. Oona, R.E. Reinovsky, K.E. Hackett, W.F. McCullough, and E.A. Lopez, Exploding Metallic Fuse Physics Experiments, IEEE Int’l Conf on Plasma Science, (1986).

    Google Scholar 

  23. J. Salge, U. Braunsberger, and U. Schwarz, Circuit Breaking by Exploding Wires in Magnetic Energy Storage Systems, Proc. Int’l Conference on Energy Storage, Compression and Switching, (1974).

    Google Scholar 

  24. G.M. Wilkinson, and A.R. Miller, Generation of Sub-microsecond Current Risetimes into Inductive Loads Using Fuses as Switching Elements, 5th IEEE Pulsed Power Conference, IEEE Cat. No. 85C2121–2 (1985).

    Google Scholar 

  25. E.V. Krivitskii, and V.P. Litvinenko, Exploding Wire Mechanisms, Sov Phys -Tech Phys., 21:1218 (1976).

    Google Scholar 

  26. I.M. Vitkovitsky and V.E. Scherrer, Recovery Characteristics of Exploding Wire Fuses in Air and Vacuum, J. Appl. Phys., 52:4 (1981).

    Article  Google Scholar 

  27. G.P. Grazunov, V.P. Kantsedal, and R.V. Mitin, Use of Electric Explosion of Wires in a High Pressure Gas to Break a Current Circuit, Zhumal Prikladnoi Mekhanikii Tekhnicheskoi Fiziki, 6:102 (1976).

    Google Scholar 

  28. P.S. Levi, Explosively Driven Rupture Conductor Opening Switches, 4th IEEE Pulsed Power Conference, IEEE Cat. No. 83CH1908-C (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Reinovsky, R.E. (1987). Fuse Opening Switches for Pulse Power Applications. In: Guenther, A.H., Kristiansen, M., Martin, T. (eds) Opening Switches. Advances in Pulsed Power Technology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1929-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1929-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9072-8

  • Online ISBN: 978-1-4613-1929-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics