Skip to main content

Inner-Shell Spectroscopy with Hard Synchrotron Radiation

  • Chapter
Progress in Atomic Spectroscopy

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

The interaction between photons and matter is one of the most fundamental processes. The interaction mechanism is well understood in the usual case of nonrelativistic photon energies and nonexcessive intensities. Studies of photon absorption and photon-induced processes thus provide a powerful tool to investigate properties of atoms, molecules, condensed matter, and surfaces. For example, cross sections for photon absorption probe the wave function overlap of electronic states; spectroscopy of absorbed or emitted radiation makes it possible to determine energy and width of levels. Atomic levels span an energy range of a few eV up to about 100 keV. Therefore, experimental studies have to employ photons in a correspondingly broad energy range (Figure 1).(1) Feasibility and quality of experimental photoab-sorption and photon-induced emission studies are governed by the available photon sources and related instruments, which are quite different in the various ranges of photon energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Kunz, in Synchrotron Radiation, Techniques and Applications (edited by C. Kunz), Springer, Berlin (1979), pp. 1–23.

    Google Scholar 

  2. C. Kunz (ed.), Synchrotron Radiation, Techniques and Applications ,Springer, Berlin (1979).

    Google Scholar 

  3. H. Winick and S. Doniach (eds.), Synchrotron Radiation Research ,Plenum Press, New York (1980).

    Google Scholar 

  4. E.-E. Koch (ed.), Handbook on Synchrotron Radiation 1 ,North-Holland, Amsterdam (1983).

    Google Scholar 

  5. E.-E. Koch, D. E. Eastman, and Y. Farge, in Ref. 4, pp. 1–63.

    Google Scholar 

  6. R. P. Phizackerley, Z. U. Rek, G. B. Stephenson, S. D. Conradson, K. O. Hodgson, T. Matsushita, and H. Oyanagi, J. Appl. Crystallogr. 16, 220–232 (1983).

    Article  Google Scholar 

  7. F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, and H. C. Pollock, Phys. Rev. 71, 829–830 (1947).

    Article  ADS  Google Scholar 

  8. D. Ivanenko and J. Pomeranchuk, Phys. Rev. 65, 343 (1944).

    Article  ADS  Google Scholar 

  9. J. Schwinger, Phys. Rev. 70, 798–799 (1946).

    Google Scholar 

  10. J. Schwinger, Phys. Rev. 75, 1912–1915 (1949).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. F. Riehle and B. Wende, Opt. Lett. 10, 365–367 (1985).

    Article  ADS  Google Scholar 

  12. C. Kunz, Phys. Bl. 32, 9–21 (1976).

    Google Scholar 

  13. HASYLAB Jahresbericht 1982 (1982).

    Google Scholar 

  14. D. E. Baynham, P. T. M. Clee, and D. J. Thompson, Nucl. Instrum. Methods 152, 31–35 (1978).

    Article  ADS  Google Scholar 

  15. DARESBURY Annual Report 1983/4 (1984).

    Google Scholar 

  16. J. E. Spencer and H. Winick, in Ref. 3, pp. 663–716.

    Google Scholar 

  17. E. Gerdau and R. Rüffer, in HASYLAB Jahresbericht 1984, pp. 305–307.

    Google Scholar 

  18. T. Matsushita and H. Hashizume, in Ref. 4, pp. 261–314.

    Google Scholar 

  19. M. Breinig, M. H. Chen, G. E. Ice, F. Parente, B. Crasemann, and G. S. Brown, Phys. Rev. A 22, 520–528 (1980).

    Article  ADS  Google Scholar 

  20. W. Soller, Phys. Rev. 24, 158–167 (1924).

    Article  ADS  Google Scholar 

  21. W. Jitschin, B. Wisotzki, U. Werner, and H. O. Lutz, J. Phys. E 17, 137–140 (1984).

    Article  ADS  Google Scholar 

  22. K. Kohra and M. Ando, Nucl. Instrum. Methods 117, 117–126 (1980).

    Article  ADS  Google Scholar 

  23. G. Materlik and V. O. Kostroun, Rev. Sci. Instrum. 51, 86–94 (1980).

    Article  ADS  Google Scholar 

  24. R. D. Deslattes, Nucl. Instrum. Methods 117, 147–151 (1980).

    Article  ADS  Google Scholar 

  25. U. Bonse, G. Materlik, and W. Schröder, J. Appl. Crystallogr. 9, 223–230 (1976).

    Article  Google Scholar 

  26. H. Hashizume, J. Appl. Cryst. 16, 420–427 (1983).

    Article  Google Scholar 

  27. B. Cleff, Acta Phys. Pol. A 61, 285–319 (1982).

    Google Scholar 

  28. H. Winick in Ref. 3, pp. 27–60.

    Google Scholar 

  29. J. G. Timothy and R. P. Madden in Ref. 4, pp. 315–366.

    Google Scholar 

  30. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy ,Wiley, New York (1967).

    Google Scholar 

  31. G. S. Brown and S. Doniach, in Ref. 3, pp. 353–385.

    Google Scholar 

  32. G. Bertolini and G. Restelli, in Atomic Inner Shell Processes II (edited by B. Crasemann), Academic, New York (1975), pp. 123–167.

    Google Scholar 

  33. R. W. Fink, in Atomic Inner Shell Processes II (edited by B. Crasemann), Academic, New York (1975), pp. 169–186.

    Google Scholar 

  34. H. Cole, F. S. Chambers, and C. G. Wood, J. Appl. Phys. 32, 1942–1945 (1961).

    Article  ADS  Google Scholar 

  35. M. Hart and A. R. D. Rodrigues, Philos. Mag. B 40, 149–157 (1979).

    Article  Google Scholar 

  36. G. Materlik and P. Suortti, J. Appl. Crystallogr. 17, 7–12 (1984).

    Article  Google Scholar 

  37. M. Brunei, G. Patrat, F. DeBergevin, F. Rousseaux, and M. Lemonnier, Acta Crystallogr. A 39, 84–88 (1983).

    Article  Google Scholar 

  38. J. W. Cooper, in Atomic Inner-Shell Processes I (edited by B. Crasemann), Academic, New York (1975), pp. 159–199.

    Google Scholar 

  39. J. H. Scofield, Lawrence Livermore Rad. Lab. Report No. UCRL-51326 (1973).

    Google Scholar 

  40. J. B. Hastings, B. M. Kincaid, and P. Eisenberger, Nucl. Instrum. Methods 152, 167–171 (1981).

    Article  Google Scholar 

  41. Wm. J. Veigele, At. Data Tables 5, 51–111 (1973).

    Article  ADS  Google Scholar 

  42. J. H. Hubbell, Wm. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Hoverton, J. Phys. Chem. Ref. Data 4, 471–538 (1975).

    Article  ADS  Google Scholar 

  43. J. H. Hubbell and Wm. J. Veigele, Technical Note 901, Nat. Bureau of Standards, Washington, DC (1976).

    Google Scholar 

  44. L. Sarkadi, Nucl. Instrum. Methods 214, 43–48 (1983).

    Article  Google Scholar 

  45. W. Jitschin, Nucl. Instrum. Methods B 4, 292–295 (1984).

    Article  ADS  Google Scholar 

  46. W. Jitschin, G. Materlik, U. Werner, and P. Funke, J. Phys. B 18, 1139–1153 (1985).

    Article  ADS  Google Scholar 

  47. P. Rabe, G. Tolkiehn, and A. Werner, J. Phys. C 12, 899–905 (1979).

    Article  ADS  Google Scholar 

  48. G. Doolen, private communication (1984).

    Google Scholar 

  49. B. Crasemann, in X84 X-Ray and Inner-Shell Processes in Atoms, Molecules and Solids (edited by A. Meisel and J. Finster), Karl-Marx-Universität, Leipzig (1984), pp. 51–60.

    Google Scholar 

  50. R. D. Deslattes and E. G. Kessler, in X84 X-Ray and Inner-Shell Processes in Atoms, Molecules and Solids (edited by A. Meisel and J. Finster), Karl-Marx-Universität, Leipzig (1984), pp. 165–175.

    Google Scholar 

  51. W. Kossel, Z. Phys. 1, 119–134 (1920).

    Article  ADS  Google Scholar 

  52. L. G. Parratt, Phys. Rev. 56, 295–297 (1939).

    Article  ADS  Google Scholar 

  53. O. Keski-Rahkonen, G. Materlik, B. Sonntag, and J. Tulkki, J. Phys. B 17, L121–126 (1984).

    Article  ADS  Google Scholar 

  54. N. Beatham, I. P. Grant, B. J. McKenzie, and S. J. Rose, Phys. Scr. 21, 423–431 (1980).

    Article  ADS  Google Scholar 

  55. J. P. Desclaux, Phys. Scr. 21, 436–442 (1980).

    Article  ADS  Google Scholar 

  56. M. H. Chen, B. Crasemann, M. Aoyagi, K.-N. Huang, and H. Mark, At. Data Nucl. Data Tables 26, 561–574 (1981).

    Article  ADS  Google Scholar 

  57. M. H. Chen, B. Crasemann, N. Mårtensson, and B. Johansson, Phys. Rev. A 31, 556–563 (1985).

    Article  ADS  Google Scholar 

  58. M. H. Chen, B. Crasemann, and H. Mark, Phys. Rev. A 24, 1158–1161 (1981).

    Article  ADS  Google Scholar 

  59. T. Åberg, Phys. Rev. 156, 35–41 (1967).

    Article  ADS  Google Scholar 

  60. F. Wuilleumier and M. O. Krause, Phys. Rev. A 10, 242–258 (1974).

    Article  ADS  Google Scholar 

  61. R. Frahm, R. Haensel, W. Malzfeldt, W. Niemann, and P. Rabe in HASYLAB Jahresbericht 1982, pp. 121–122.

    Google Scholar 

  62. R. D. Deslattes, R. E. La Villa, P. L. Cowan, and A. Henins, Phys. Rev. A 27, 923–933 (1983).

    Article  ADS  Google Scholar 

  63. P. H. Kobrin, S. Southworth, C. M. Truesdale, D. W. Lindle, U. Becker, and D. A. Shirley, Phys. Rev. A 29, 194–199 (1984).

    Article  ADS  Google Scholar 

  64. D. F. Jackson and D. J. Hawkes, Phys. Rep. 70, 169–223 (1981).

    Article  ADS  Google Scholar 

  65. S. T. Manson and M. Inokuti, J. Phys. B. 13, L323–L326 (1980).

    Article  ADS  Google Scholar 

  66. M. Ya. Amusia, V. K. Ivanov, and V. A. Kupchenko, J. Phys. B 14, L667–L671 (1981).

    Article  ADS  Google Scholar 

  67. S. Younger, unpublished, cited in Ref. 62.

    Google Scholar 

  68. C. Froese Fischer, J. Comput. Phys. 27, 221–240 (1978).

    Article  ADS  Google Scholar 

  69. S. T. Manson, in X-Ray and Atomic Inner Shell Physics-1982 (edited by B. Crasemann), American Institute of Physics, New York (1982), pp. 321–330.

    Google Scholar 

  70. P. A. Heimann, T. A. Ferrett, D. A. Shirley, U. Becker, and H. G. Kerkhoff, Stanford Synchrotron Radiation Laboratory, Activity Report for 1985, edited by K. Cantwell (1985), p. IX–9.

    Google Scholar 

  71. P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid, Rev. Mod. Phys. 53, 769–806 (1981).

    Article  ADS  Google Scholar 

  72. E. A. Stern and S. M. Heald, in Ref. 4, pp. 955–1014.

    Google Scholar 

  73. A. Bianconi, L. Incoccia, and S. Stipcich (eds.), EXAFS and Near Edge Structures ,Springer Series in Chem. Phys., Vol. 27, Springer, Berlin (1983).

    Google Scholar 

  74. K. O. Hodgson, B. Hedman, and J. E. Penner-Hahn (eds.), EXAFS and Near Edge Structure III ,Springer Proc. Phys. Vol. 2, Springer, Berlin (1984).

    Google Scholar 

  75. D. Koningsberger and R. Prins (eds.), Principles, Techniques and Applications of EXAFS ,SEXAFS and XANES ,Wiley, New York (1984).

    Google Scholar 

  76. G. Materlik, B. Sonntag, and M. Tausch, Phys. Rev. Lett. 51, 1300–1303 (1983).

    Article  ADS  Google Scholar 

  77. W. Niemann, M. Lübcke, W. Malzfeldt, P. Rabe, and R. Haensel, in HASYLAB Jahresbericht 1984, pp. 222–223.

    Google Scholar 

  78. D. Wohlleben and J. Röhler, J. Appl. Phys. 55, 1904–1909 (1984).

    Article  ADS  Google Scholar 

  79. J. Röhler, D. Wohlleben, J. P. Kappler, and G. Krill, Phys. Lett. 103A, 220–224 (1984).

    ADS  Google Scholar 

  80. R. de L. Kronig, Z. Phys. 75, 468–475 (1932).

    Article  ADS  MATH  Google Scholar 

  81. D. R. Sandstrom and F. W. Lytle, Ann. Rev. Phys. Chem. 30, 215–238 (1979).

    Article  ADS  Google Scholar 

  82. F. W. Lytle, G. H. Via, and J. H. Sinfelt, in Ref. 3, pp. 401–424.

    Google Scholar 

  83. B. K. Teo and P. A. Lee, J. Am. Chem. Soc. 101, 2815–2832 (1979).

    Article  Google Scholar 

  84. S. T. Manson and J. W. Cooper, Phys. Rev. 165, 126–138 (1968).

    Article  ADS  Google Scholar 

  85. S. M. Heald and E. A. Stern, Phys. Rev. B 15, 5549–5559 (1977).

    Article  ADS  Google Scholar 

  86. F. W. Lytle, D. E. Sayers, and E. A. Stern, Phys. Rev. B 11, 4825–4835 (1975).

    Article  ADS  Google Scholar 

  87. B. K. Teo, J. Am. Chem. Soc. 103, 3990–4001 (1981).

    Article  Google Scholar 

  88. V. A. Biebesheimer, E. C. Marques, D. R. Sandstrom, F. W. Lytle, and R. B. Greegor, J. Chem. Phys. 81, 2599–2604 (1984).

    Article  ADS  Google Scholar 

  89. D. Norman, in X-Ray and Inner Shell Physics-1982 (edited by B. Crasemann), American Institute of Physics, New York (1982), pp. 745–758.

    Google Scholar 

  90. P. H. Citrin, P. Eisenberger, and J. E. Rowe, Phys. Rev. Lett. 48, 802–805 (1982).

    Article  ADS  Google Scholar 

  91. S. A. E. Johansson and T. B. Johansson, Nucl. Instrum. Methods 137, 473–516 (1976).

    Article  ADS  Google Scholar 

  92. C. J. Sparks, Jr., S. Raman, E. Ricci, R. V. Gentry, and M. O. Krause, Phys. Rev. Lett. 40, 507–511 (1978).

    Article  ADS  Google Scholar 

  93. C. J. Sparks, Jr., in Ref. 3, pp. 459–512.

    Google Scholar 

  94. A. Knöchel, W. Petersen, and G. Tolkiehn, Nucl. Instrum. Methods 208, 659–663 (1983).

    Article  Google Scholar 

  95. W. Bambynek, B. Crasemann, R. W. Fink, H.-U. Freund, H. Mark, C. D. Swift, R. E. Price, and P. Venugopala Rao, Rev. Mod. Phys. 44, 716–813 (1972).

    Article  ADS  Google Scholar 

  96. J. H. Scofield, At. Data Nucl. Data Tables 14, 121–137 (1974).

    Article  ADS  Google Scholar 

  97. M. H. Chen, B. Crasemann, and H. Mark, At. Data Nucl. Data Tables 24, 13–37 (1979).

    Article  ADS  Google Scholar 

  98. Kh. R. Karim, M. H. Chen, and B. Crasemann, Phys. Rev. A 29, 2605–2610 (1984).

    Article  ADS  Google Scholar 

  99. Kh. R. Karim and B. Crasemann, Phys. Rev. A 31, 709–713 (1985).

    Article  ADS  Google Scholar 

  100. M. O. Krause, J. Phys. Chem. Ref. Data 8, 307–327 (1979).

    Article  ADS  Google Scholar 

  101. W. Jitschin, U. Werner, K. Finck, and H. O. Lutz, in High-Energy Ion-Atom Collisions II (edited by D. Berényi and G. Hock), Elsevier, Amsterdam (1985), pp. 79–95.

    Google Scholar 

  102. G. S. Brown, M. H. Chen, B. Crasemann, and G. E. Ice, Phys. Rev. Lett. 45, 1937–1940 (1980).

    Article  ADS  Google Scholar 

  103. G. E. Ice, G. S. Brown, G. B. Armen, M. H. Chen, B. Crasemann, J. Levin, and D. Mitchell, in X-Ray and Inner-Shell Physics-1982 (edited by B. Crasemann), American Institute of Physics, New York (1982), pp. 105–113.

    Google Scholar 

  104. A. Niehaus, J. Phys. B 10, 1845–1857 (1977).

    Article  ADS  Google Scholar 

  105. B. Williams (ed.), Compton Scattering ,McGraw-Hill, New York (1977).

    Google Scholar 

  106. M. Cooper, R. Holt, P. Pattison, and K. R. Lea, Commun. Phys. 1, 159–165 (1976).

    Google Scholar 

  107. C. J. Sparks, Jr., Phys. Rev. Lett. 33, 262–265 (1974).

    Article  ADS  Google Scholar 

  108. M. Gavrila and M. N. Tugulea, Rev. Roum. Phys. 20, 209–230 (1975).

    Google Scholar 

  109. J. Tulkki, in “X-84 Conference Book of Abstracts,”Karl-Marx-Universität, Leipzig (1984), pp. 474–475.

    Google Scholar 

  110. J. M. Hall, K. A. Jamison, O. L. Weaver, P. Richard, and T. Åberg, Phys. Rev. A 19, 568–578 (1979).

    Article  ADS  Google Scholar 

  111. T. Åberg and J. Tulkki, in Atomic Inner-Shell Physics (edited by B. Crasemann), Plenum Press, New York (1985), pp. 419–463.

    Google Scholar 

  112. J. P. Briand, D. Girard, V. O. Kostroun, P. Chevalier, K. Wohrer, and J. P. Mossé, Phys. Rev. Lett. 46, 1625–1628 (1981).

    Article  ADS  Google Scholar 

  113. D. Schaupp, H. Czerwinski, F. Smend, R. Wenskus, M. Schumacher, A. H. Millhouse, and H. Schenk-Strauss, Z. Phys. A 319, 1–7 (1984).

    Article  ADS  Google Scholar 

  114. H. Czerwinski, F. Smend, D. Schaupp, M. Schumacher, A. H. Millhouse, and H. Schenk-Strauss, Z. Phys. A 322, 183–189 (1985).

    Article  ADS  Google Scholar 

  115. Y. R. Shen, Phys. Rev. B 9, 622–626 (1974).

    Article  ADS  Google Scholar 

  116. J. R. Solin and H. Markelo, Phys. Rev. B 12, 624–629 (1975).

    Article  ADS  Google Scholar 

  117. J. Tulkki, Phys. Rev. A 27, 3375–3378 (1983).

    Article  ADS  Google Scholar 

  118. P. Eisenberger, P. M. Platzman, and H. Winick, Phys. Rev. Lett. 36, 623–626 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Jitschin, W. (1987). Inner-Shell Spectroscopy with Hard Synchrotron Radiation. In: Beyer, H.J., Kleinpoppen, H. (eds) Progress in Atomic Spectroscopy. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1857-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1857-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9036-0

  • Online ISBN: 978-1-4613-1857-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics