Skip to main content

Role of Zinc Deficiency in Carcinogenesis

  • Chapter
Essential Nutrients in Carcinogenesis

Abstract

Zinc is a trace element required for the growth of normal and neoplastic tissues in a variety of species. Zinc deficiency is associated with alterations in the activity of zinc-dependent enzymes essential for cell replication. Dietary zinc deficiency also increases the incidence of certain tumors while decreasing the incidence of others. The mechanism by which zinc deficiency alters carcinogenesis is not fully understood. Among those tumors whose incidence is increased by dietary zinc deficiency are carcinomas induced by dialkylnitrosamines. This class of carcinogens requires microsomal cytochrome P-450 activation to be mutagenic. Zinc deficiency is known to increase the cytochrome P-450-dependent metabolism of methylbenzylnitrosamine (MBN)‚ an esophageal carcinogen of this class. Examination of the kinetics of this reaction reveals zinc to be a direct noncompetitive inhibitor of the microsomal metabolism of MBN. Thus the lower rate of MBN metabolism by zinc-adequate versus zinc-deficient microsomes may be due to normal tissue zinc acting as a noncompetitive inhibitor of cytochrome P-450 activity in vivo. This effect of zinc on carcinogen metabolism may explain the increased incidence of nitrosamine-induced carcinomas observed with dietary zinc deficiency.

Supported in part by ACS-IN-159, Research Board Grant #975, University of Illinois, Health Sciences, Chicago (DHB), and U.S. Public Health Service Grant CA29078 (PMI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

MBN:

methylbenzylnitrosamine; sulfate

Km :

Michaelis constant

Vmax :

maximum velocity

References

  1. W. Todd, C. Elverhjem, and E. Hart, Zinc in the nutrition of the rat, Am. J. Physiol. 107:146 (1934).

    CAS  Google Scholar 

  2. A. Prasad, The role of zinc in gastrointestinal and liver disease, Clin. in Gastroenterol. 12:713 (1983).

    CAS  Google Scholar 

  3. J. Riordan, Biochemistry of zinc, Med. Clin. North Am. 60:661 (1976).

    CAS  Google Scholar 

  4. B. Vallee, Biochemistry, physiology and pathology of zinc, Physiol. Rev. 39:433 (1959).

    Google Scholar 

  5. B. Vallee, Zinc biochemistry in the normal and neoplastic growth processes, in: “Cancer Enzymology, vol. 12,” J. Schultz and F. Ahmad, eds., Academic Press, New York (1976).

    Google Scholar 

  6. H. H. Sandstead, The role of zinc in human health, in: “Trace Substances in Environmental Health, vol. 12,” D. D. Hemphill, ed., Columbia, Mo., University of Missouri (1978).

    Google Scholar 

  7. D. Barr and J. Harris, Growth of the P388 leukemia as an ascites tumor in zinc-deficient mice, Proc. Soc. Exp. Biol. Med. 144:284 (1973).

    CAS  Google Scholar 

  8. W. Pories and W. DeWys, Implications of the inhibition of animal tumors by dietary zinc deficiency, Adv. Exp. Med. Biol. 91:243 (1978).

    CAS  Google Scholar 

  9. B. Mills, W. Broghamer, P. Higgins, et al., A specific dietary zinc requirement for the growth of Walker 256/M1 tumor in the rat, Am. J. Clin. Nutr. 34:1661 (1981).

    CAS  Google Scholar 

  10. G. F. Nordberg and O. Andersen, Metal interactions in carcinogenesis: Enhancement, inhibition, Environ. Health Perspect. 40:65 (1981).

    Article  CAS  Google Scholar 

  11. R. S. Beach, M. E. Gershwin, and L. S. Hurley, Zinc, copper, and manganese in immune function and experimental oncogenesis, Nutr. Cancer 3:172 (1982).

    Article  CAS  Google Scholar 

  12. S. Mobarhan, R. Russell, P. Newberne, et al., The effect of zinc deficiency and alcohol feeding on esophageal epithelium of rats, Nutr. Rep. Int. 29:639 (1984).

    CAS  Google Scholar 

  13. R. J. W. Burrell, W. A. Roach, and A. Shadwell, Esophageal cancer in the Bantu of the Transkei associated with mineral deficiency in garden plants, J. Natl. Cancer Inst. 36:201 (1966).

    CAS  Google Scholar 

  14. S. Van Rensburg, Failure of low protein and zinc intakes to influence nitrosamine-induced oesophageal carcinogenesis, S. Afr. Med. J. 46:1137 (1972).

    Google Scholar 

  15. G. P. Warwick and J. S. Harington, Some aspects of the epidemiology and etiology of esophageal cancer with particular emphasis on the Transkei, South Africa, Adv. Cancer Res. 17:81 (1973).

    Article  Google Scholar 

  16. H. J. Lin, W. C. Chan, Y. Y. Fong, et al., Zinc levels in serum, hair and tumors from patients with esophageal carcinoma, Nutr. Rep. Int. 15:635 (1977).

    CAS  Google Scholar 

  17. M. Fenton, J. Burke, F. Tursl, et al., Effect of a zinc-deficient diet on the growth of an IgM-secreting plasmacytoma (TEPC-183), J. Natl. Cancer Inst. 65:1271 (1980).

    CAS  Google Scholar 

  18. G. Baker and J. Duncan, Possible site of zinc control of hepatoma cell division in Wistar rats, J. Natl. Cancer Inst. 70:333 (1983).

    CAS  Google Scholar 

  19. A. S. Prasad and D. Oberleas, Thymidine kinase activity and incorporation of thymidine into DNA in zinc-deficient tissue, J. Lab. Clin. Med. 83:634 (1974).

    CAS  Google Scholar 

  20. I. Dreosti and L. Hurley, Depressed thymidine kinase activity in zinc deficient rat embryos, Proc. Soc. Exp. Biol. Med. 150:161 (1975).

    CAS  Google Scholar 

  21. M. Fujioka and I. Lieberman, A Zn++ requirement for synthesis of deoxyribonucleic acid by rat liver, J. Biol. Chem. 239:1164 (1964).

    CAS  Google Scholar 

  22. L. Saryan, D. Minkel, P. Dolhun, et al., Effects of zinc deficiency on cellular processes and morphology in Ehrlich ascites tumor cells, Cancer Res. 39:2457 (1979).

    CAS  Google Scholar 

  23. C. Krishnamurti, L. Saryan, and D. Petering, Effects of ethylene diaminetetraacetic acid and 1,10-phenanthroline on cell proliferation and DNA synthesis of Ehrlich ascites cells, Cancer Res. 40:4092 (1980).

    CAS  Google Scholar 

  24. J. Duncan and I. Dreosti, A site of action for zinc in neoplastic tissue, S. Afr. Med. J. 50:711 (1976).

    CAS  Google Scholar 

  25. J. Duncan and L. Hurley, Thymidine kinase and DNA polymerase activity in normal and zinc deficient developing rat embryos, Proc. Soc. Exp. Biol. Med. 159:39 (1978).

    CAS  Google Scholar 

  26. J. Slater, A. Mildvan, and L. Loeb, Zinc in DNA polymerases, Biochem. Biophys. Res. Commun. 44:37 (1971).

    Article  CAS  Google Scholar 

  27. C. Springgate, A. Mildvan, R. Abramson, et al., Escherichia coli deoxyribonucleic acid polymerase I, a zinc metalloenzyme, J. Biol. Chem. 248:5987 (1973).

    CAS  Google Scholar 

  28. M. Scrutton, C. Wu, and D. Goldthwait, The presence and possible role of zinc in RNA polymerase obtained from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 68:2497 (1971).

    Article  CAS  Google Scholar 

  29. M. Terhune and H. Sandstead, Decreased RNA polymerase activity in mammalian zinc deficiency, Science 177:68 (1972).

    Article  CAS  Google Scholar 

  30. K. Falchuk, D. Fawcett, and B. Vallee, Role of zinc in cell division of Euglena gracilis, J. Cell Sci. 17:57 (1975).

    CAS  Google Scholar 

  31. J. Gibson, B. Vallee, R. Fluharty, et al., Studies of the zinc content of the leukocytes in myelogenous leukemia, Acta Unio Int. Contra Cancrum 6:1102 (1950).

    CAS  Google Scholar 

  32. M. Kew and R. Mallett, Hepatic zinc concentrations in primary cancer of the liver, Br. J. Cancer 29:80 (1974).

    Article  CAS  Google Scholar 

  33. E. Wright and T. Dormandy, Liver zinc in carcinoma, Nature 237:166 (1972).

    Article  CAS  Google Scholar 

  34. E. Margalioth, J. Schenker, and M. Chevion, Copper and zinc levels in normal and malignant tissues, Cancer 52:868 (1983).

    Article  CAS  Google Scholar 

  35. F. Gyorkey, M. Kyung-Whan, J. Huff, et al., Zinc and magnesium in human prostate gland: normal, hyperplastic and neoplastic, Cancer Res. 27:1348 (1967).

    CAS  Google Scholar 

  36. B. Rosoff, Studies of zinc in normal and neoplastic prostatic tissue,in: “The Prostatic Cell: Structure and Function, Progress in Clinical and Biological Research, vol. 75,” G. P. Murphy and K. Sandberg, eds., Alan R. Liss, New York (1981).

    Google Scholar 

  37. M. Mellow, E. Layne, T. Lipman, et al., Plasma zinc and vitamin A in human squamous carcinoma of the esophagus, Cancer 51:1615 (1983).

    Article  CAS  Google Scholar 

  38. D. Thurnham, P. Rathakette, K. Hambidge, et al., Riboflavin, vitamin A and zinc status in Chinese subjects in a high-risk area for oesophageal cancer in China, Human Nutr. Clin. Nutr. 36C:337 (1982).

    Google Scholar 

  39. N. Munoz, A. Grassi, S. Quong, et al., Precursor lesions of oesophageal cancer in high-risk populations in Iran and China, Lancet 1:876 (1982).

    Article  CAS  Google Scholar 

  40. S. Auerbach, Zinc content of plasma, blood, and erythrocytes in normal subjects and in patients with Hodgkin’s disease and various hematologic disorders, J. Lab. Clin. Med. 65:628 (1965).

    CAS  Google Scholar 

  41. S. Atukorala, J. Dickerson, D. Donaldson, et al., Vitamin A, zinc and lung cancer, Br. J. Cancer 40:927 (1979).

    Article  CAS  Google Scholar 

  42. B. Issell, B. Macfedyen, E. Gum, et al., Serum zinc levels in lung cancer patients, Cancer 47:1845 (1981).

    Article  CAS  Google Scholar 

  43. J. Beeley, C. Darke, G. Owen, et al., Serum zinc, bronchiectasis, and bronchial carcinoma, Thorax 29:2125 (1974).

    Article  Google Scholar 

  44. G. Andrews, Studies of plasma zinc, copper, caeruloplasmin, and growth hormone, J. Clin. Pathol. 32:325 (1979).

    Article  CAS  Google Scholar 

  45. J. Morgan, Cadmium and zinc abnormalities in bronchogenic carcinoma, Cancer 25:1394 (1970).

    Article  CAS  Google Scholar 

  46. V. Voyatzoglou, T. Mountokalakis, V. Tasata-Voyatzoglou, et al., Serum zinc levels and urinary zinc excretion in patients with bronchogenic carcinoma, Am. J. Surg. 144:355 (1982).

    Article  CAS  Google Scholar 

  47. A. Zakrzewski, A. Durska-Zakrezewska, J. Skoniecczny, et al., The content of some trace elements in blood serum of patients with larynx cancer, Acta Otolaryngol. 73:227 (1972).

    Article  CAS  Google Scholar 

  48. J. Garofalo, E. Erlandson, E. Strong, et al., Serum zinc, serum copper, and the Cu/Zn ratio in patients with epidermoid cancers of the head and neck, J. Surg. Oncol. 15:381 (1980).

    Article  CAS  Google Scholar 

  49. M. Abdulla, A. Biorklud, A. Mathur, et al., Zinc and copper levels in whole blood and plasma from patients with squamous cell carcinomas of head and neck, J. Surg. Oncol. 12:107 (1979).

    Article  CAS  Google Scholar 

  50. L. Y. Y. Fong, A. Sivak, and P. M. Newberne, Zinc deficiency and methylbenzylnitrosamine-induced esophageal cancer in rats, J. Natl. Cancer Inst. 61:145 (1978).

    CAS  Google Scholar 

  51. L. H. Schloen, G. Fernandes, J. A. Garafalo, et al., Nutrition, immunity and cancer--a review. Part II: Zinc, immune function and cancer, Clin. Bull. 9:63 (1979).

    CAS  Google Scholar 

  52. G. Fisher, V. Byers, M. Shifrine, et al., Copper and zinc levels in serum from human patients with sarcomas, Cancer 37:356 (1976).

    Article  CAS  Google Scholar 

  53. T. Saito, A. Wakul, T. Himori, et al., Serum Zn content in tumor bearing rats treated with anticancer drugs, Tohoku J. Exp. Med. 129:111 (1979).

    Article  CAS  Google Scholar 

  54. M. Fenton and J. Burke, Changes in serum, liver and tumor zinc levels during plasmacytoma growth in BALB/c mice, Proc. Soc. Exp. Biol. Med. 173:390 (1983).

    CAS  Google Scholar 

  55. L. V. Akerman, I. B. Weinstein, H. S. Kaplan, et al., Organ specific cancers, cancer of esophagus, in: “Cancer in China,” B. Henry, S. Kaplan, and P. J. Tsochitan, eds., Alan R. Liss, New York (1978).

    Google Scholar 

  56. C. Yang, Research on esophageal cancer in China: A review, Cancer Res. 40:2633 (1980).

    CAS  Google Scholar 

  57. S. J. Van Rensberg, Epidemiological and dietary evidence for a specific nutritional predisposition to esophageal cancer, J. Natl. Cancer Inst. 67:243 (1981).

    Google Scholar 

  58. S. Mobarhan, K. Dowlatshahi, and Y. Y. Diba, Hair zinc levels from a normal population of north east Iran with a high incidence of esophageal carcinoma, Am. J. Clin. Nutr. 33:940 (1980).

    Google Scholar 

  59. K. Dowlatshahi and S. Mobarhan, Diet and environment in the etiology of esophageal carcinoma, in: “Frontiers in Gastrointestinal Cancer,” B. Levin and R. Riddell, eds., Elsevier, New York (1984).

    Google Scholar 

  60. J. F. Sullivan and H. G. Lankford, Zinc metabolism and chronic alcoholism, Am. J. Clin. Nutr. 17:57 (1965).

    CAS  Google Scholar 

  61. G. N. Gabrial, T. F. Schrager, and P. M. Newberne, Zinc deficiency, alcohol, and a retinoid: Association with esophageal cancer in rats, J. Natl. Cancer Inst. 68:785 (1982).

    CAS  Google Scholar 

  62. S. J. Van Rensburg, D. B. Du Bruyn, and D. J. Van Schalkwyk, Promotion of methylbenzylnitrosamine-induced esophageal cancer in rats by subclinical zinc deficiency, Nutr. Rep. Int. 22:891 (1980).

    Google Scholar 

  63. D. H. Barch, S. Kuemmerle, P. Hollenberg, et al., Esophageal microsomal metabolism of N-nitrosomethylbenzylamine in the zinc-deficient rats, Cancer Res. 44:5629 (1984).

    CAS  Google Scholar 

  64. K. B. Franz, B. M. Kennedy, and D. A. Fellers, Relative bioavailability of zinc using weight gain of rats, J. Nutr. 110:2263 (1980).

    CAS  Google Scholar 

  65. L. Y. Y. Fong, J. S. K. Lee, W. C. Chan, et al., Zinc deficiency and the development of esophageal and forestomach tumors in Sprague-Dawley rats fed precursors of N-nitro-N-benzylmethylamine, J. Natl. Cancer Inst. 72:419 (1984).

    CAS  Google Scholar 

  66. H. Druckrey, R. Preussmann, S. Ivankovic, et al., Organotrope Carcinogene Wirkungen bei 65 Verschiedenen N-Nitroso-Verbindungen an BD-Ratten, Z. Krebsforsch. 69:103 (1967) (in German).

    Article  CAS  Google Scholar 

  67. P. N. Magee and J. M. S. Barnes, Carcinogenic nitroso compounds, Adv. Cancer Res. 1:163 (1970).

    Google Scholar 

  68. W. L. Ng, L. Y. Y. Fong, and P. M. Newberne, Forestomach squamous papillomas in the rat: Effect of dietary zinc deficiency on induction, Cancer Lett. 22:329 (1984).

    Article  CAS  Google Scholar 

  69. R. Beach, M. Gershwin, and L. Hurley, Dietary zinc modulation of Moloney sarcoma virus oncogenesis, Cancer Res. 41:552 (1981).

    CAS  Google Scholar 

  70. A. Mathur, K. Wallenius, M. Abdulla, et al., Role of zinc and copper in experimental and clinical neoplasia, in: “Proceedings of the Third International Symposium on Trace Element Metabolism in Man and Animals,” M. Kirchgessner, ed., Weihenstephan, Arbeitskreis fur Tierermahrungsforschung (1978).

    Google Scholar 

  71. K. Wallenius, A. Mathur, and M. Abdulla, Effect of different levels of dietary zinc on development of chemically induced oral cancer in rats, Int. J. Oral Surg. 8:56 (1979).

    Article  CAS  Google Scholar 

  72. J. Duncan and I. Dreosti, Brief communication: Zinc intake, neoplastic DNA synthesis, and chemical carcinogenesis in rats and mice, J. Natl. Cancer Inst. 55:195 (1975).

    CAS  Google Scholar 

  73. P. Czygan, H. Greim, A. J. Garro, et al., Microsomal metabolism of dimethylnitrosamine and the cytochrome P-450 dependency of its activation to a mutagen, Cancer Res. 33:2983 (1973).

    CAS  Google Scholar 

  74. H. Popper, P. Czygan, H. Greim, et al., Mutagenicity of primary and secondary carcinogens altered by normal and induced hepatic microsomes, Proc. Soc. Exp. Biol. Med. 142:727 (1973).

    CAS  Google Scholar 

  75. L. L. Gerchman and D. B. Ludlum, The properties of 06-methylguanine in templates for RNA polymerase, Biochim. Biophys. Acta 308:310 (1973).

    CAS  Google Scholar 

  76. T. Yahagi, M. Nagao, Y. Seino, et al., Mutagenicities of N-nitroso-amines on Salmonella, Mutat. Res. 48:121 (1977).

    Article  CAS  Google Scholar 

  77. A. E. Pegg, Formation and removal of methylated nucleosides in nucleic acids of mammalian cells, Recent Stud. Cancer Res. 84:49 (1982).

    Google Scholar 

  78. P. D. Lotlikar, W. J. Baldy, Jr., and E. N. Dwyer, Dimethylnitrosamine demethylation by reconstituted liver microsomal cytochrome P-450 enzyme system, Biochem. J. 152:705 (1975).

    CAS  Google Scholar 

  79. G. E. Labuc and M. C. Archer, Esophageal and hepatic microsomal metabolism of N-nitrosomethylbenzylamine and N-nitrosodimethylamine in the rat, Cancer Res. 42:3181 (1982).

    CAS  Google Scholar 

  80. F. Adeniyi and F. Heaton, The effect of zinc deficiency on alkaline phosphatase (EC 3.1.3.1) and its isoenzymes, Br. J. Nutr. 43:561 (1980).

    Article  CAS  Google Scholar 

  81. E. H. Jeffery, The effect of zinc on NADPH oxidation and monooxygenase activity in rat hepatic microsomes, Mol. Pharmacol. 23:467 (1983).

    CAS  Google Scholar 

  82. A. Rutenburg, H. Kim, J. Fischbein, et al., Histochemical and ultrastructural demonstration of gamma-glutamy1 transpeptidase activity, J. Histochem. Cytochem. 17:517 (1969).

    Article  CAS  Google Scholar 

  83. B. Lake, C. Heading, J. Phillips, et al., Some studies on the metabolism in vitro of dimethylnitrosamine by rat liver, Biochem. Soc. Trans. 2:610 (1974).

    CAS  Google Scholar 

  84. J. Farrelly, M. Stewart, J. Saavedra, et al., Relationship between carcinogenicity and in vitro metabolism of nitrosomethylethylamine, nitrosomethyl-N-butylamine, and nitrosomethyl-(2-phenylethyl)amine labeled with deuterium in the methyl and a-methylene positions, Cancer Res. 42:2105 (1982).

    CAS  Google Scholar 

  85. J. Farrelly, A new assay for the microsomal metabolism of nitrosamines, Cancer Res. 40:3241 (1980).

    CAS  Google Scholar 

  86. L. Y. Y. Fong, H. Ju Lin, and C. L. H. Lee, Methylation of DNA in target and non-target organs of the rat with methylbenzylnitrosamine and dimethylnitrosamine, Int. J. Cancer 23:679 (1979).

    Article  CAS  Google Scholar 

  87. R. Montesano, H. Bresil, C. Drevon, et al., DNA repair in mammalian cells exposed to multiple doses of alkylating agents, Biochimie 64:591 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Barch, D.H., Iannaccone, P.M. (1986). Role of Zinc Deficiency in Carcinogenesis. In: Poirier, L.A., Newberne, P.M., Pariza, M.W. (eds) Essential Nutrients in Carcinogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1835-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1835-4_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9025-4

  • Online ISBN: 978-1-4613-1835-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics