Skip to main content

Steroid hormone regulation of cultured breast cancer cells

  • Chapter
Breast Cancer: Cellular and Molecular Biology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 40))

Abstract

Most of the information we have about the regulation of breast tumor growth relates to hormones, especially steroid hormone effects. Such actions are diverse and complex involving direct effects on the tumor cells and indirect effects via other endocrine and non-endocrine organs. Because of this complexity, it is extremely difficult to interpret in vivo data at the required level of cellular and molecular organization so cell culture systems have to be extensively used. Despite the general dogma that ‘cancer cells have escaped from growth control’, establishment of cultures from primary breast tumors has been difficult, more difficult in fact than with normal mammary cells [1]. Furthermore, the establishment of meaningful hormonal regulation of such cultures has been elusive. This has led many workers, ourselves included, to use established cell lines to answer the question of how do steroids affect mammary tumor cell growth? Cell lines clearly have the advantage of relative cellular homogeneity, reproducibility from one experiment to another, ease of experimental manipulation and an approximately defined medium in which growth can be studied. The word ‘approximately’ is used because, although serum free conditions have been used for looking at short to medium-term effects of steroids [2–4], serum is present in the majority of such experiments and is always used for long-term maintenance of such cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smith HS, Wolman SR, Hackett AJ: The biology of breast cancer at the cellular level. Biochim Biophys Acta 738:103–123, 1984.

    PubMed  CAS  Google Scholar 

  2. Allegra JC, Lippman ME: Growth of a human breast cancer cell line in serum-free hormone-supplemented medium. Cancer Res 38:3823–3829, 1978.

    PubMed  CAS  Google Scholar 

  3. Barnes D, Sato G: Growth of a human mammary tumour cell line in a serum-free medium. Nature 281:388–389, 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Darbre PD, Curtis S, King RJB: Effects of estradiol and tamoxifen on human breast cancer cells in serum-free culture. Cancer Res. 44:2790–2793, 1984.

    PubMed  CAS  Google Scholar 

  5. Sonnenschein C, Soto AM: But are estrogens per se growth-promoting hormones? J Nat Cancer Inst 64:211–215, 1980.

    PubMed  CAS  Google Scholar 

  6. Sirbasku DA, Ikeda T, Danielpour D: Endocrine and autocrine estromedins for mammary and pituitary cells. In: Mediators in cell growth and differentiation, Ford RJ and Maizel AL, (eds), pp 213–232. Raven Press: New York, 1985.

    Google Scholar 

  7. Smith JA, King RJB: Effects of steroids on growth of an androgen-dependent mouse mammary carcinoma in cell culture. Exp Cell Res 73:351–359, 1972.

    Article  PubMed  CAS  Google Scholar 

  8. Meakin JW: Cell biology of a transplantable androgen-dependent mammary tumor in the mouse. Proceedings of the Third International Congress of Endocrinology. In: Excerpta Medica International Congress Series 157, 165 (abstract).

    Google Scholar 

  9. Minesita T, Yamaguchi K: An androgen-dependent mouse mammary tumor. Cancer Res 25:1168–1175, 1965.

    PubMed  CAS  Google Scholar 

  10. Matsumoto K, Sato B, Kitamura Y: Roles of androgen and its receptors in mouse mammary tumor. In: Hormonal Regulation of Mammary Tumors. Vol. 1: Steroid Hormones, Leung BS (ed), pp 216–244. Eden Press: Montreal, Canada, 1982.

    Google Scholar 

  11. King RJB, Cambray GJ, Jagus-Smith R, Robinson JH, Smith JA: Steroid hormones and the control of tumor growth: studies on androgen-responsive tumor cells in culture. In: Receptors and Mechanism, of Steroid Hormones Pasqualini JR (ed), pp 215–261. Marcel Dekker: New York, 1976.

    Google Scholar 

  12. King RJB: Studies on the regulation of cell proliferation in culture by steroids. In: Hormones and Cell Regulation, Vol. 2, Dumont J and Nunez J (eds), pp 15–36. Elsevier North Holland Biomedical Press: Amsterdam, 1978.

    Google Scholar 

  13. Engel LW, Young NA, Tralka TS, Lippman ME, O’Brian SJ, Joyce MJ: Establishment and characterization of three new continues cell lines derived from human breast carcinomas. Cancer Res 38:3352–3364, 1978.

    PubMed  CAS  Google Scholar 

  14. Yates J, King RJB: Multiple sensitivities of mammary tumor cells in culture. Cancer Res 38:4135–4137, 1978.

    PubMed  CAS  Google Scholar 

  15. Darbre PD, King RJB: Differential effects of steroid hormones on parameters of cell growth. Cancer Res 47:2937–2944, 1987.

    PubMed  CAS  Google Scholar 

  16. Yates J, King RJB: Correlation of growth properties and morphology with hormone responsiveness of mammary tumor cells in culture. Cancer Res 41:258–262, 1981.

    PubMed  CAS  Google Scholar 

  17. Yates J, Couchman JR, King RJB: Androgen effects on growth, morphology, and sensitivity of S115 mouse mammary tumor cells in culture. In: Hormones and Cancer King RJB, Iacobelli S, Lindner HR and Lippman ME (eds), Vol. 14, pp 31–39. Raven Press: New York, 1980.

    Google Scholar 

  18. Couchman JR, Yates J, King RJB, Badley RA: Changes in microfilament and focal adhesion distribution with loss of androgen responsiveness in cultured mammary tumor cells. Cancer Res 41:263–269, 1981.

    PubMed  CAS  Google Scholar 

  19. Yates J, King RJB: Lack of correlation between transformed characteristics in culture and tumorigenicity of mouse mammary tumor cells. Eur J Cancer Clin Oncol 18:399–403, 1982.

    Article  PubMed  CAS  Google Scholar 

  20. Sapino A, Pietribiasi F, Bussolati G, Marchisio PC: Estrogen- and tamoxifen-induced rearrangement of cytoskeletal and adhesion structures in breast cancer MCF7 cells. Cancer Res 46:2526–2531, 1986.

    PubMed  CAS  Google Scholar 

  21. Traina VL, Taylor BA, Cohen JC: Genetic mapping of endogenous mouse mammary tumor viruses: locus characterization, segregation and chromosomal distribution. J Virol 40:735–744, 1981.

    PubMed  CAS  Google Scholar 

  22. Peters G, Placzek M, Brookes S, Kozak C, Smith R, Dickson C. Characterization, chromosome assignment and segregation analysis of endogenous proviral units of mouse mammary tumor virus. J Virol 59:535–544, 1986.

    PubMed  Google Scholar 

  23. Ponta M, Gunzburg WH, Salmons B, Groner B, Herrlich P: Mouse mammary tumor virus: a proviral gene contributes to the understanding of eukaryotic gene expression and mammary tumorigenesis. J Gen Virol 66:931–943, 1985.

    Article  PubMed  CAS  Google Scholar 

  24. Nusse R, Varmus HE: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109, 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Peters G, Brookes S, Smith R, Dickson C: Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 33:369–377, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Brown AMC, Wildin RS, Prendergast TJ, Varmus HE: A retrovirus vector expressing the putative mammary oncogene int-I causes partial transformation of a mammary epithelial cell line. Cell 46:1001–1009, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Garcia M, Wellinger R, Vessaz A, Diggelmann H: A new site of integration for mouse mammary tumor virus proviral DNA common to BALB/cf(C3H) mammary and kidney adenocarcinomas. EMBO J 5:127–134, 1986.

    PubMed  CAS  Google Scholar 

  28. Donehower LA, Huang AL, Hager GL: Regulatory and coding potential of the mouse mammary tumor virus long terminal redundancy J Virol 37:226–238, 1981.

    PubMed  CAS  Google Scholar 

  29. Fasel N, Pearson K, Buetti E, Diggelmann H: The region of mouse mammary tumor virus DNA containing the long terminal repeat includes a long coding sequence and signals for hormonally regulated transcription. EMBO J 1:3–7, 1982.

    PubMed  CAS  Google Scholar 

  30. Donehower LA, Fleurdelys B, Hager GL: Further evidence for the protein coding potential of the mouse mammary tumor virus long terminal repeat: nucleotide sequence of an endogenous proviral long terminal repeat. J Virol 45:941–949, 1983.

    PubMed  CAS  Google Scholar 

  31. Dickson C, Smith R, Peters G: In vitro synthesis of polypeptides encoded by the long terminal repeat region of mouse mammary tumour virus DNA. Nature 291:511–513, 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Darbre P, Dickson C, Peters G, Page M, Curtis S, King RJB: Androgen regulation of cell proliferation and expression of viral sequences in mouse mammary tumor cells. Nature 303:431–433, 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Darbre PD, Curtis SA, King RJB: Cellular and molecular events regulated by androgens in the S115 mouse mammary tumor cell line. In: Progress in Cancer Research and Therapy, Bresciani F, King RJB, Lippman ME, Namer M and Raynaud JP (eds), vol. 31, pp 261–268, Raven Press: New York, 1984.

    Google Scholar 

  34. Darbre PD, Moriarty A, Curtis SA, King RJB: Androgen regulates MMTV RNA in the short-term in S115 mouse mammary tumour cells. J Steroid Biochem 23:379–384, 1985.

    Article  PubMed  CAS  Google Scholar 

  35. Gordon J, Smith JA, King RJB: Metabolism and binding of androgens by mouse mammary tumour cells in culture. Mol Cell Endocrinol 1:259–270, 1974.

    Article  CAS  Google Scholar 

  36. Darbre P, Page M, King RJB: Androgen regulation by the long terminal repeat of mouse mammary tumor virus. Mol Cell Biol 6:2847–2854, 1986.

    PubMed  CAS  Google Scholar 

  37. Ringold GM: Regulation of mouse mammary tumor virus gene expression by glucocorticoid hormones. Current Topics Microbiol Immun 106:79–103, 1983.

    CAS  Google Scholar 

  38. Payvar F, DeFranco D, Firestone GL, Edgar B, Wrange O, Okret S, Gustafsson JA, Yamamoto KR: Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell 35:381–392, 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Pfahl M, McGinnis D, Hendricks M, Groner B, Hynes NE: Correlation of glucocorticoid receptor binding sites on MMTV proviral DNA with hormone inducible transcription. Science 222:1341–1343, 1983.

    Article  PubMed  CAS  Google Scholar 

  40. Scheidereit C, Geisse S, Westphal HM, Beato M: The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumor virus. Nature 304:749–752, 1983.

    Article  PubMed  CAS  Google Scholar 

  41. Chandler VL, Maler BA, Yamamoto KR: DNA sequences bound specifically by glucocorticoid receptor In vitro render a heterologous promoter hormone responsive in vivo. Cell 33:489–499, 1983.

    Article  PubMed  CAS  Google Scholar 

  42. Parker M: Enhancer elements activated by steroid hormones? Nature 304:687–688, 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Ostrowski MC, Huang AL, Kessel M, Wolford RG, Hager GL: Modulation of enhancer activity by the hormone responsive regulatory element from mouse mammary tumor virus. EMBO J. 3, 1891–1899, 1984.

    PubMed  CAS  Google Scholar 

  44. Ponta H, Kennedy N, Skroch P, Hynes NE, Groner B: Hormonal response region in the mouse mammary tumor virus long terminal repeat can be dissociated from the proviral promoter and has enhancer properties. Proc Natl Acad Sci USA 82:1020–1024, 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Overhauser J, Fan H: Generation of glucocorticoid-responsive Moloney murine leukemia virus by insertion of regulatory sequences from murine mammary tumor virus into the long terminal repeat. J Virol 54:133–144, 1985.

    PubMed  CAS  Google Scholar 

  46. Young HA, Scolnick EM, Parks WP: Glucocorticoid-receptor interaction and induction of murine mammary tumor virus. J Biol Chem 250:3337–3343, 1975.

    PubMed  CAS  Google Scholar 

  47. von der Ahe D, Janich S, Scheidereit C, Renkawitz R, Schutz G, Beato M: Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Nature 313:706–709, 1985.

    Article  PubMed  Google Scholar 

  48. von der Ahe D, Renoir JM, Buchou T, Baulieu EE, Beato M: Receptors for glucocor-ticosteroid and progesterone recognize distinct features of a DNA regulatory element. Proc Natl Acad Sci USA 83:2817–2821, 1986.

    Article  PubMed  Google Scholar 

  49. Cato ACB, Miksicek R, Schutz G, Arnemann J, Beato M: The hormone regulatory element of mouse mammary tumor virus mediates progesterone induction. EMBO J 5: 2237–2240, 1986.

    PubMed  CAS  Google Scholar 

  50. Cato ACB, Henderson D, Ponta H: The hormone response element of the mouse mammary tumor virus DNA mediates the progestin and androgen induction of transcription in the proviral long terminal repeat region. EMBO J 6:363–368, 1987.

    PubMed  CAS  Google Scholar 

  51. Jakobovits EB, Majors JE, Varmus HE: Hormonal regulation of the Rous sarcoma virus Src gene via a heterologous promoter defines a threshold dose for cellular transformation. Cell 38:757–765, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Papkoff J, Ringold GM: Use of the mouse mammary tumor virus long terminal repeat to promote steroid-inducible expression of v-mos. J Virol 52:420–430, 1984.

    PubMed  CAS  Google Scholar 

  53. Stewart TA, Pattengale PK, Leder P: Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–637, 1984.

    Article  PubMed  CAS  Google Scholar 

  54. Jaggi R, Salmons B, Muellener D, Groner B: The v-mos and H-ras oncogene expression represses glucocorticoid hormone-dependent transcription from the mouse mammary tumor virus LTR. EMBO J 5:2609–2616, 1986.

    PubMed  CAS  Google Scholar 

  55. Dickson C, Smith R, Brooks S, Peters G: Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37:529–536, 1984.

    Article  PubMed  CAS  Google Scholar 

  56. Nusse R, van Ooyen A, Cox D, Fung YKT, Vamus H: Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307:131–136, 1984.

    Article  PubMed  CAS  Google Scholar 

  57. Khoury G, Gruss P: Enhancer elements. Cell 33:313–314, 1983.

    Article  PubMed  CAS  Google Scholar 

  58. Kolata G: New clues to gene regulation. Science 224:588–589, 1984.

    Article  PubMed  CAS  Google Scholar 

  59. Hynes N, van Ooyen AJJ, Kennedy N, Herrlich P, Ponta H: Groner B: Subfragments of the large terminal repeat cause glucocorticoid-responsive expression of mouse mammary tumor virus and of an adjacent gene. Proc Natl Acad Sci USA 80:3637–3641, 1983.

    Article  PubMed  CAS  Google Scholar 

  60. Mulligan RC, Berg P: Expression of a bacterial gene in mammalian cells. Science 209:1422–1427, 1980.

    Article  PubMed  CAS  Google Scholar 

  61. King RJB: How important are steroids in regulating the growth of mammary tumors? Biochem Actions Hormones 6:247–265, 1979.

    Google Scholar 

  62. Leung BS (ed) In: Hormonal Regulation of Mammary Tumors, Vols. I and II. Eden Press: Montreal, Canada, 1982.

    Google Scholar 

  63. Foulds L: In: Neoplastic Development, Vol. I, pp 54–56, Academic Press: New York, 1969.

    Google Scholar 

  64. DeSombre ER, Jensen EV: Clinical usefulness of steroid receptor determinations in breast cancer. In: Hormonal Regulation of Mammary Tumors, Vol. 1, Leung BS (ed), pp 155–182. Eden Press: Montreal, Canada. 1982.

    Google Scholar 

  65. Dexter DL, Calabresi P: Intraneoplastic diversity. Biochim Biophys Acta 695:97–112, 1982.

    PubMed  CAS  Google Scholar 

  66. Sluyser M: Hormone receptors in mouse mammary tumors. In: Mammary Tumors in the Mouse, Hilgers J and Sluyser M (eds), pp 267–299. Elsevier North Holland Biomedical: Amsterdam. 1981.

    Google Scholar 

  67. Desmond WJ, Wolbers SJ, Sato G: Cloned mouse mammary cell lines requiring androgens for growth in culture. Cell 8:79–86, 1976.

    Article  PubMed  CAS  Google Scholar 

  68. Stanley ER, Palmer RE, Sohn U: Development of methods for the quantitative In vitro analysis of androgen-dependent and autonomous Shionogi carcinoma 115 cells. Cell 10:35–44, 1977.

    Article  PubMed  CAS  Google Scholar 

  69. Kerbel RS: Implications of immunological heterogeneity of tumors. Nature 280:358–360, 1979.

    Article  PubMed  CAS  Google Scholar 

  70. Sluyser M, DeGoeij CCJ, Evers SG: Changes in sensitivity to cyclophosphamide of mouse mammary tumors during serial transplantation. J Natl Cancer Inst 66:327–330, 1981.

    PubMed  CAS  Google Scholar 

  71. Fidler IJ, Hart IR: The origin of metastatic heterogeneity in tumors. Eur J Cancer 17:487–494, 1981.

    Article  PubMed  CAS  Google Scholar 

  72. Soule HD, Maloney T, McGrath CM: Phenotypic variance among cells isolated from spontaneous mouse mammary tumors in primary suspension culture. Cancer Res 41:1154–1164, 1981.

    PubMed  CAS  Google Scholar 

  73. Heppner GH, Dexter DL, DeNucci T, Miller FR, Calabresi P: Heterogeneity in drug sensitivity among tumor cell subpopulations of a single mammary tumor. Cancer Res 38:3758–3763, 1978.

    PubMed  CAS  Google Scholar 

  74. Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner G: Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res 38:3174–3181, 1978.

    PubMed  CAS  Google Scholar 

  75. Hager JC, Fligiel S, Stanley W, Richardson AM, Heppner GH: Characterization of a variant-producing tumor cell line from a heterogeneous strain BALB/cfC3H mouse mammary tumor. Cancer Res 41:1293–1300, 1981.

    PubMed  CAS  Google Scholar 

  76. Michalides R, Wagenaar E, Sluyser M: Mammary tumor virus DNA as a marker for genotypic variance within hormone-responsive GR mouse mammary tumors. Cancer Res 42:1154–1158, 1982.

    PubMed  CAS  Google Scholar 

  77. Kim U: Factors influencing the generation of phenotypic heterogeneity in mammary tumors. In: Biological Responses in Cancer, Mihich E (ed), Vol. 4, pp 91–124. Plenum Press: New York, 1985.

    Google Scholar 

  78. Darbre P, King RJB: Progression to steroid autonomy in S115 mouse mammary tumor cells: role of DNA methylation. J Cell Biol 99:1410–1415, 1984.

    Article  PubMed  CAS  Google Scholar 

  79. Nicholson GL: The evolution of phenotypic diversity in metastatic tumor cells. In: Biological Responses in Cancer, Mihich E, (ed), Vol. 4, pp 71–89. Plenum Press: New York, 1985.

    Google Scholar 

  80. Waalwijk C, Flavell RA: DNA methylation at a CCGG sequence in the large intron of the rabbit β-globin gene: tissue specific variations. Nucleic Acids Res 5:4631–4641, 1978.

    Article  PubMed  CAS  Google Scholar 

  81. Razin A, Riggs AD: DNA methylation and gene function. Science 210:604–610, 1980.

    Article  PubMed  CAS  Google Scholar 

  82. Felsenfeld G, McGhee J: Methylation and gene control. Nature 296:602–603, 1982.

    Article  PubMed  CAS  Google Scholar 

  83. Doerfler W: DNA methylation and gene activity. Ann Rev Biochem 52:93–124, 1983.

    Article  PubMed  CAS  Google Scholar 

  84. Bird AP: DNA methylation—how important in gene control? Nature 307:503–504, 1984.

    Article  PubMed  CAS  Google Scholar 

  85. Doerfler W: DNA methylation: role in viral transformation and persistence. Adv Viral Oncol 4:217–247, 1984.

    CAS  Google Scholar 

  86. Cohen JC: Methylation of milk-born and genetically transmitted mouse mammary tumor virus proviral DNA. Cell 19:653–662, 1980.

    Article  PubMed  CAS  Google Scholar 

  87. Breznik T, Cohen JC: Altered methylation of endogenous viral promoter sequences during mammary carcinogenesis. Nature 295:255–257, 1982.

    Article  PubMed  CAS  Google Scholar 

  88. Drohan WN, Benado LE, Graham DE, Smith GH: Mouse mammary tumor virus proviral sequences congenital to C3H/Sm mice are differentially hypomethylated in chemically induced, virus-induced and spontaneous mammary tumors. J Virol 43:876–884, 1982.

    PubMed  CAS  Google Scholar 

  89. Fanning TG, Vassos AB, Cardiff RD: Methylation and amplification of mouse mammary tumor virus DNA in normal, premalignant, and malignant cells of GR/A mice. J Virol 41:1007–1013, 1982.

    PubMed  CAS  Google Scholar 

  90. Diala ES, Cheah MSC, Rowitch D, Hoffman RM: The extent of DNA methylation in human tumor cells. J Natl Cancer Inst 71:755–764, 1983.

    PubMed  CAS  Google Scholar 

  91. Feinberg AP, Vogelstein B: Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92, 1983.

    Article  PubMed  CAS  Google Scholar 

  92. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Enrlich M: The 5-methyl-cytosine content of DNA from human tumors. Nucleic Acids Res 11: 6883–6894, 1983.

    Article  PubMed  CAS  Google Scholar 

  93. Jones PA: DNA methylation and cancer. Cancer Res 46:461–466, 1986.

    PubMed  CAS  Google Scholar 

  94. Gasson JC, Ryden T, Bourgeois S: Role of de novo DNA methylation in the glucocorticoid resistance of a T-lymphoid cell line. Nature 302:621–623, 1983.

    Article  PubMed  CAS  Google Scholar 

  95. Compere SJ, Palmiter RD: DNA methylation controls the inducibility of the mouse metal-lothionein-I gene in lymphoid cells. Cell 25:233–240, 1981.

    Article  PubMed  CAS  Google Scholar 

  96. Gasson JC, Bourgeois S: A new determinant of glucocorticoid sensitivity in lymphoid cell lines. J Cell Biol 96:409–415, 1983.

    Article  PubMed  CAS  Google Scholar 

  97. Saluz HP, Jiricny J, Jost JP: Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci USA 83:7167–7171, 1986.

    Article  PubMed  CAS  Google Scholar 

  98. Miesfeld R, Okret S, Wikstrom AC, Wrange O, Gustafsson JA, Yamamoto KR: Characterization of a steroid hormone receptor gene and mRNA in wild-type and mutant cells. Nature 312:779–781, 1984.

    Article  PubMed  CAS  Google Scholar 

  99. Westphal HM, Mugele K, Beato M, Gehring U: Immunochemical characterization of wild-type and variant glucocorticoid receptors by monoclonal antibodies. EMBO J 3:1493–1498, 1984.

    PubMed  CAS  Google Scholar 

  100. Gehring U: Genetics of glucocorticoid receptors. Mol Cell Endocrinol 48:89–96, 1986.

    Article  PubMed  CAS  Google Scholar 

  101. George FW, Wilson JD: Hormonal control of sexual development. Vitam Horm 43:145–196, 1986.

    Article  PubMed  CAS  Google Scholar 

  102. Kontula KK, Janne OA, Bardin CW: Intracellular hormone receptor defects and disease. In: The Receptors, Conn PM, (ed), Vol. IV, pp 37–74. Academic Press, New York, 1986.

    Google Scholar 

  103. Gaubert CM, Carriero R, Shyamala G: Relationships between mammary estrogen receptor and estrogenic sensitivity. Molecular properties of cytoplasmic receptor and its binding to deoxyribonucleic acid. Endocrinology 118:1504–1512, 1986.

    Article  PubMed  CAS  Google Scholar 

  104. Nawata H, Chong MT, Bronzert D, Lippman ME: Estradiol-independent growth of a subline of MCF-7 human breast cancer cells in culture. J Biol Chem 256:6895–6902, 1981.

    PubMed  CAS  Google Scholar 

  105. Sedlacek SM, Horwitz KB: The role of progestins and progesterone receptors in the treatment of breast cancer. Steroids 44:467–484, 1984.

    Article  PubMed  CAS  Google Scholar 

  106. Danielsen M, Northrop JP, Ringold GM: The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins. EMBO J 5:2513–2522, 1986.

    PubMed  CAS  Google Scholar 

  107. Sibley CH, Yamamoto KR: Mouse lymphoma cells: mechanisms of resistance to glucocorticoids. In: Glucocorticoid Hormone Action, Baxter JD and Rousseau GG (eds), Monographs in Endocrinology 12:357–376. Springer Verlag: New York, 1979.

    Google Scholar 

  108. Darbre P, Yates J, Curtis S, King RJB: Effect of estradiol on human breast cancer cells in culture. Cancer Res. 43, 349–354, 1983.

    PubMed  CAS  Google Scholar 

  109. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS: Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 83:2496–2500, 1986.

    Article  PubMed  CAS  Google Scholar 

  110. Vic P, Vignon F, Deroc D, Rochefort H: Effect of estradiol on the ultrastructure of the MCF, human breast cancer cells in culture. Cancer Res 42:667–673, 1982.

    PubMed  CAS  Google Scholar 

  111. Leung BS, Qureshi S, Leung J: Response to estrogen by the human mammary carcinoma cell line CAMA 1. Cancer Res 42:5060–5066, 1982.

    PubMed  CAS  Google Scholar 

  112. Katzenellenbogen BS, Kendra KL, Berthois Y: Proliferation of estrogen-responsive MCF-7 human breast cancer cells grown in the short-term and long-term absence of estrogens. J Cell Biochem Suppl 11A: p 131, 1987.

    Google Scholar 

  113. King RJB, Smith JA, Steggles AW: Oestrogen-binding and the hormone responsiveness of tumors. Steroidologia 1:73–88, 1970.

    PubMed  CAS  Google Scholar 

  114. Hahnel R: Steroid receptor status, tumor growth and prognosis. In New Aspects of Breast Cancer, Stoll BA (ed), Vol. 5, pp 107–143: William Heinemann Medical Books: London, 1982.

    Google Scholar 

  115. Bates S, McManaway M, Lippman ME, Dickson RB: Characterization of Estrogen Responsive Transforming activity in Human Breast Cancer Cell Lines. Cancer Res 46:1707–1713, 1986.

    PubMed  Google Scholar 

  116. Huff KK, Kanabbe C, Kaufman D, Lindsay R, Lippman ME, Dickson RB: Multihormonal Regulation of Insulin-like Growth Factor-I-Related Proteins in MCF7—A Human Breast Cancer Cells. Molecular Endocrinology, in-press, 1988.

    Google Scholar 

  117. Farewell VT: Statistical methods and mathematical models for research in breast disease. In: Commentaries on Research in Breast Disease, ed. Bulbrook RD and Taylor DJ (eds), Vol. 1, pp 226–229. Alan R. Liss: New York, 1979.

    Google Scholar 

  118. Darbre P and King RJB: Interaction of different steroid hormones during progression of tumor cells to steroid autonomy. Int J Cancer 40:802–806, 1987.

    Article  PubMed  CAS  Google Scholar 

  119. Darbre P and King RJB: Progression to steroid insensitivity can occur irrespective of the presence of functional steroid receptors. Cell 51:521–528, 1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Darbre, P.D., King, R.J.B. (1988). Steroid hormone regulation of cultured breast cancer cells. In: Lippman, M.E., Dickson, R.B. (eds) Breast Cancer: Cellular and Molecular Biology. Cancer Treatment and Research, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1733-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1733-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8975-3

  • Online ISBN: 978-1-4613-1733-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics