Skip to main content

Biochemistry and Lectin Binding Properties of Mammalian Salivary Mucous Glycoproteins

  • Chapter
The Molecular Immunology of Complex Carbohydrates

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 228))

Abstract

Mucus is a complex exocrine secretion that covers the epithelial linings of higher animals. This secretion is derived from different types of epithelial glands which are composed of a variety of specialized cells. Consequently, tear, sputum, saliva, gastric juice, colonic and cervical mucus are all composed of a heterogeneous mixture of secretory products. Salivary mucus is produced by several glands (Table I). The bulk of it is derived from three main organ glands, namely the parotid which is serous in nature, the submandibular which contains both mucous and serous type acini, and the predominantly mucus secreting sublingual gland (1–5). In addition, numerous so-called minor salivary glands are dispersed throughout the oral soft tissue (6,7). These labial glands are composed mainly of mucous secreting cells, and consequently are a major source of the total mucins in saliva although they comprise only some 10% of the salivary volume produced daily. Mixed salivary secretions contain some 99.5% water; the remainder is made up of glycocon jugates, lipids, proteins, ions and small metabolites (8–12) . Due to its great variety of components, saliva plays multiple physiological roles.

The article is dedicated to Dr. Ward Pigman, one of the pioneers in the field of salivary mucin biochemistry, who died on september 30, 1977.

Abbreviations are listed in Appendix I entitled “A Guide for Carbohydrate Specificities of Lectins”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Quintarelli, Histochemical identification of salivary mucins. Ann. N.Y. Acad. Sci. 106:339–363 (1963).

    Article  PubMed  CAS  Google Scholar 

  2. J.M. Shakleford and W.H. Wilborn, Structural and histochemical diversity in mammalian salivary glands, Alabama J. Med. Sci. 5:180–203 (1968).

    Google Scholar 

  3. Banks, W.G., Applied Veterinary Histology. Williams Nilkins. Baltimore (1981).

    Google Scholar 

  4. Dellmanns, H.D., Veterinary Histology. Lea & Febiger, Philadelphia (1971).

    Google Scholar 

  5. G. Quintarelli, S. Tsuiki, Y. Hashimoto and W. Pigman, Studies of sialic acid-containing mucins in bovine submaxillary and rat sublingual glands. J. Histochem. Cytochem. 5:176–183 (1961).

    Article  Google Scholar 

  6. L.R. Eversole, The histochemistry of mucosubstances in human minor salivary glands. Arch. Oral Biol. 2 7:1235–1239 (1972).

    Google Scholar 

  7. D.R. Green and G. Embery, Partial chemical characterization and biological activities of sulphated glycoproteins isolated from in vivo pilocarpine-stimulated secretions of rat minor salivary glands. Arch. Oral Biol. 29:859–863 (1984).

    Article  PubMed  CAS  Google Scholar 

  8. R.C. Caldwell and W. Pigman, Disc electrophoresis of human saliva in polyacrylamide gel. Arch. Biochem. Biophys. 110:91–96 (1965).

    Article  PubMed  CAS  Google Scholar 

  9. B.L. Slomiany, M. Aono, V.L.N. Murty, A. Slomiany, M.J. Levine and L.A. Tabak, Lipid composition of submandibular saliva from normal and cystic fibrosis individuals. J. Dent. Res. 61:1163–1166 (1982).

    Article  PubMed  CAS  Google Scholar 

  10. A.Bennick, Salivary acidic proline-rich proteins. Mol. Cell. Biochem. 45:83–99 (1982)

    Google Scholar 

  11. J.A. Young and C.A. Schneyer, Composition of saliva in mammalia. Australian J. Exp. Biol. Med. Sci.5.9: 1–53 (1981).

    Article  CAS  Google Scholar 

  12. M. Mogi, B.Y. Hiraoka, K. Fukasawa, M. Harada, T. Kage and T. Ching, Two-dimensional electrophoresis in the analysis of a mixture of human sublingual and submandibular salivary proteins. Arch. Oral Biol.31:119–125 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. A.P. Vreugdenhil, A.V. Nieuw Amerongen, G.L. Dange and P.A. Roukema, Localization of amylase and mucins in the major salivary glands of the mouse. Histochem. J. 14: 767–780 (1982).

    Article  PubMed  CAS  Google Scholar 

  14. M.S. Finkelstein, M. Tanner and M.L. Freedman, Salivary and serum I levels in a geriatric outpatient population. J. Clin. Immunol. 4:85–91 (1984).

    Article  PubMed  CAS  Google Scholar 

  15. M.R. Allansmith, J.L. Ebersole and C.A. Burns, I antibody levels in human tears, saliva and serum, Ann. N.Y. Acad. Sci. 409:166–168 (1983).

    Article  Google Scholar 

  16. R.R. Arnold, M.F. Cole and J.R. Mhee, A bactericidal effect of human lactoferrin. Science 197:263–265 (1975).

    Article  Google Scholar 

  17. J.D. Rudney, K.C. Kajander and Q.T. Smith, Correlation between human salivary levels of lysozyme, lactoferrin, salivary peroxidase and secretory immunoglobulin A with different stimulatory states and over time. Arch. Oral Biol. 30:765–771, (1985).

    Article  PubMed  CAS  Google Scholar 

  18. B. L. Lamberts, K.M. Pruitt, E.D. Pederson and M.P.Golding, Comparison of salivary peroxidase system components in caries-free and caries-active naval recruits. Caries Res. 25:488–494 (1984).

    Article  Google Scholar 

  19. M.G. Humphreys-Behrer, Strain-specific differences in the proline-rich proteins and glycoproteins induced in rat salivary gland by chronic isoprenaline treatment. Biochem. J. 230:369–378, (1985).

    Google Scholar 

  20. M.N. Hatton, R.E. Loomis, M.J. Levine and L.A. Taback, Masticatory lubrication. Biochem. J. 230:817–820 (1985).

    PubMed  CAS  Google Scholar 

  21. J.R. Clamp, The relationship between the immune system and mucus in the protection of mucous membranes. Biochem. Soc. Trans. 22:754–756 (1984).

    Google Scholar 

  22. P.A. Murray, M.J. Levine, L.A. Tabak, and M.S. Reddy, Specificity of salivary-bacterial interactions: II. Evidence for a lectin on Streptococcus sanguis with specificity for a NeuAcα2→3Gaiβ1→3GalNac sequence. Biochem. Biophys. Res. Commun. 106:390–396 (1982).

    Article  PubMed  CAS  Google Scholar 

  23. J. Parkkinen, J. Finne, M. Achtman, V. Väisänen and T.K. Korhonen, Escherichia coli strains binding neuraminylα2→3 galactosides. Biochem. Biophys. Res. Commun. III:456–4 61 (1983).

    Google Scholar 

  24. R.J.Gibbons and J.V. Quershi, Selective binding of blood group-reactive salivary mucins by Streptococcus mutans and other oral organisms. Infect. Immun. 22: 665–671 (1978).

    Google Scholar 

  25. K. Landsteiner and R.A. Harte, On group specific A substances. IV. The substance from hog stomach. J.Exp. Med. 72:551–562 (1940).

    Google Scholar 

  26. F.M. Burnet, Mucins and mucoids in relation to influenza virus action. III. Inhibition of virus haemagglutination by glandular mucins. Australian J. Exp. Biol. Med. Sci. 26:311–319 (1948).

    Google Scholar 

  27. A. Gottschalk, Carbohydrate residue of a urine muco- protein inhibiting influenza virus haemagglutination. Nature 170:662–663 (1952).

    Article  PubMed  CAS  Google Scholar 

  28. O. Hammarsten, Uber das Mucin der Submaxillardrüse. I. Darstellung, Zusammensetzung und Eigenschaften des Submaxillarismucins. Hoppe-Seyler’s Z. 12:163–195 (1888).

    Google Scholar 

  29. P. Vaith and G. Uhlenbruck, The Thomsen agglutination phenomenon: a discovery revisited 50 years later. Z. Immun. Forsch. 154:1–14 (1978).

    CAS  Google Scholar 

  30. G.W.G. Bird, Anti-T in peanuts. Vox Sang.9: 748–749 (1964).

    Article  PubMed  CAS  Google Scholar 

  31. D.B. Thomas and R.J. Winzler, Structural studies on human erythrocyte glycoproteins alkali-labile oligosaccharides. J. Biol. Chem. 244:5943–5946 (1969).

    PubMed  CAS  Google Scholar 

  32. E. Lisowska, Antigenic Properties of human erythrocyte glycophorins in Molecular Immunology of Complex Carbohydrates. Wu, A.M., Ed. Plenum Press. New York and London (1987).

    Google Scholar 

  33. G.F. Springer, P.R. Desai, M.S. Murthy, H.J. Yang and E.F. Scanlon, Precursors of the blood group MN antigens as human carcinoma-associated antigens. Transfusion 15:223–247 (1979).

    Google Scholar 

  34. R. Schauer, Occurrence of Sialic Acids in Sialic Acids, Chemistry, Metabolism and Function. Springer Verlag, Wien, New York (1982) p. 5–27.

    Google Scholar 

  35. R. Schauer, Chemistry, metabolism and biological functions of sialic acids. Adv. Carbohydrate Chem. Biochem. 40:131–234 (1982).

    Article  CAS  Google Scholar 

  36. R. Schauer, Sialic acids and their role as biological masks. Trends Biochem. SCi. 10:357–361 (1985).

    Article  CAS  Google Scholar 

  37. D.C. Gowda, V.P. Bhavanandan and E.A. Davidson, Structures of O-linked oligosaccharides present in the proteoglycans secreted by human mammary epithelial cells. J. Biol. Chem. 261:4935–4939 (1986).

    PubMed  CAS  Google Scholar 

  38. J. Haverkamp, R. Schauer and M. Wember, Neuraminic acid derivatives newly discovered in Humåns: N-acetyl-9–0- lactoyl-neuraminic acid, N-9-0-diacetylneuraminic acid and N-acetyl-2,3-dehydro-2-deoxyneuraminic acid. Hoppe- Seyler’s Z. 357:1699–1705 (1976).

    Article  CAS  Google Scholar 

  39. G. Tettamanti and W. Pigman, Purification and characterization of bovine and ovine submaxillary mucins. Arch. Biochem. Biophys. 124:41–50 (1968).

    Article  PubMed  CAS  Google Scholar 

  40. W.B. Clarke and R.J. Gibbons, Influence of salivary components and extracellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces. Infect. Immun. 28:514–523 (1977).

    Google Scholar 

  41. J.M. Creeth, K.R. Bhasker, J.R. Horton, I. Das, M. Lopez- Vidriero and L. Reid, The separation and characterization of bronchial glycoproteins by density gradient methods. Biochem. J. 267:557–569 (1977).

    Google Scholar 

  42. Carlstedt, H. Lindgren, J.K. Sheehan, U. Ulmsten and L. Wingerup, Isolation and characterization of human cervical-mucous glycoproteins. Biochem. J. 211:13–22 (1983).

    PubMed  CAS  Google Scholar 

  43. M. Mantle, D. Mantle and A. Allen, Polymeric structure of pig small-intestinal mucus glycoprotein. Dissociation by proteolysis or by reduction of disulfide bridges. Biochem. J. 195:211–285 (1981).

    Google Scholar 

  44. G. Lamblin, M. Lhermitte, P. Degand, P. Roussel and H. Slayter, Chemical and physical properties of human bronchial mucus glycoproteins. Biochimie 61:23–43 (1979).

    Article  PubMed  CAS  Google Scholar 

  45. C.E. Snyder, C.E. Nadziejko and A. Herp, Isolation of bronchial mucins from cystic fibrosis sputum by use of citraconic anhydride. Carbohydr. Res. 105:81–93 (1982).

    Google Scholar 

  46. N. Fleming, M. Brent, R. Arellano and J.F. Forstner, Purification and immunofluorescent localization of rat submandibular mucin. Biochem. J. 205:225–233 (1982).

    PubMed  CAS  Google Scholar 

  47. K.G. Holden, N.C.F. Yim, L.J. Griggs and J.A. Weisbach, Gel electrophoresis of mucous glycoproteins. I. Effect of gel porosity. Biochemistry 10:3105–3109 (1971).

    Article  PubMed  CAS  Google Scholar 

  48. K.G. Holden, N.C.F. Yim, L.J. Griggs and J.A. Weisbach, Gel electrophoresis of mucous glycoproteins. II. Effect of physical deaggregation and disulfide-bond cleavage. Biochemistry 10:3110–3113 (1971).

    Article  PubMed  CAS  Google Scholar 

  49. N. Payza, M. Robert and A. Herp, The molecular weight of bovine and porcine submaxillary mucins. Int. J. Protein Res.2:109–115 (1970).

    Article  PubMed  CAS  Google Scholar 

  50. S.E. Harding, An analysis of the heterogeneity of mucins. Biochem. J. 219:1061–1064 (1984).

    PubMed  CAS  Google Scholar 

  51. W. Pigman, Submandibular and sublingual glycoproteins. In The Glycoconjugates (M. Horowitz and W. Pigman, Eds.). Vol. 1, 137–152 (1977), Academic Press, Inc. New York.

    Google Scholar 

  52. Nasir-Ud-Din, R.W. Jeanloz, G. Lamblin, P. Roussel, H. Van Halbeek, J.H.G. Mutsaers and J.F.G. Vliegenthart, Structure of sialyloligosaccharides isolated. from bonnet monkey (Macaca radiata) cervical mucus glycoproteins exhibiting blood group activity. J. Biol. Chem. 261: 1992–1997 (1986).

    PubMed  CAS  Google Scholar 

  53. A.M. Wu and W. Pigman, Preparation and characterization of armadillo submandibular glycoproteins. Biochem. J. 161:31–41 (1977).

    Google Scholar 

  54. C.G. Lombart and R.J. Winzler, Isolation and characterization of canine submaxillary mucin. Biochem. J. 128:915–911 (1972).

    Google Scholar 

  55. B.B. Dutta., S. Ghosh, A. Das and C.V.N. Rao, Isolation and characterization of goat submaxillary-mucin. Carbohydr. Res. 101:101–108 (1982).

    Article  PubMed  CAS  Google Scholar 

  56. F. Downs and A. Herp, Chemical studies on a hamster sublingual glycoprotein. Int. J. Peptide Protein Res. 10:229–234 (1977).

    Article  CAS  Google Scholar 

  57. F. Downs, M. Harris and A. Herp, The isolation and properties of a glycoprotein from hamster submaxillary gland. Arch. Oral Biol. 21:307–311 (1976).

    Article  PubMed  CAS  Google Scholar 

  58. M.M. Baig, R.J. Winzler and O.M. Rennert, Isolation of mucin from human submaxillary secretions. J. Immunol. 111:1826–1833 (1973).

    PubMed  CAS  Google Scholar 

  59. P.A. Roukema, C.H. Oderkerk and M.S. Salkinoja-Salonen, The murine sublingual and submandibular mucins, their isolation and characterization. Biochim. Biophys. Acta 428:432–440 (1976).

    PubMed  CAS  Google Scholar 

  60. P.A. Denny and P.C. Denny, Purification and biochemical characterization of a mouse submandibular sialomucin. Carbohydr. Res. 57:265–274 (1980).

    Article  Google Scholar 

  61. N. Payza, S. Rizvi and W. Pigman, Studies of action of acids and bases on porcine submaxillary mucin. Arch. Biochem. Biophys. 129:68–14 (1969).

    Article  PubMed  CAS  Google Scholar 

  62. J. Moschera and W. Pigman, The isolation and characterization of rat sublingual mucus-glycoprotein. Carbohydr. Res. 40:53–61 (1975).

    Article  PubMed  CAS  Google Scholar 

  63. L.A. Tabak, L. Mirels, L.D. Monte, A. L. Ridall, M.J. Levine, R.E. Loomis, F. Lindauer, M.S. Reddy and B.J. Baum, Isolation and characterization of a mucin-glycoprotein from rat submandibular glands. Arch. Biochem. Biophys. 242:383–392 (1985).

    Article  PubMed  CAS  Google Scholar 

  64. Y. Hashimoto and W. Pigman, Action of proteolytic enzymes on purified bovine submaxillary mucins. N.Y. Acad. Sci. 106:233–246. (1962).

    Article  Google Scholar 

  65. B. Anderson, N. Seno, P. Sampson, J.G. Riley, P. Hoffman and K. Meyer, Threonine and serine linkage in mucopolysaccharides and glycoproteins. J. Biol. Chem. 239:PC 2716–2717 (1964).

    Google Scholar 

  66. D. M. Carlson, Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J. Biol. Chem. 243:616–626 (1968).

    Google Scholar 

  67. F. Downs, A. Herp, J. Moschera and W. Pigman, β-Elimination and reduction reactions and some applications of dimethylsulfoxide on submaxillary glycoproteins. Biochim. Biophys. Acta 328:182–192 (1973).

    PubMed  CAS  Google Scholar 

  68. C-C.W. Chao, J.P. Vergnes and S.I. Brown, O-Glycosidic linkage in glycoprotein isolates from human ocular mucus. Exp. Eye Res. 37:533–541 (1983).

    Article  PubMed  CAS  Google Scholar 

  69. R.D. Marshall, Determination of the 4-N-2-acetamido-2- deoxy-β- D-glucopyranosyl- L-asparagine linkage in glycoproteins. Methods Carbohydr. Chem. 7:212–220 (1976).

    CAS  Google Scholar 

  70. R.G. Spiro, Determination of the 5–0-β- D-galactopyrano- sylhydroxy- L-lysine linkage in glycoproteins. Methods Carbohydr. Chem.7:205–211 (1976).

    CAS  Google Scholar 

  71. S. Ogata and K.O. Lloyd, Mild alkaline borohydride treatment of glycoproteins — a method for liberating both N- and O-linked carbohydrate chains. Anal. Biochem. 119:351–359 (1982).

    Article  PubMed  CAS  Google Scholar 

  72. J.R. Neeser, G.l.c. of methyloxime and alditol acetate derivatives of neutral sugars, hexosamines, and sialic acids: “one pot” quantitative determination of the carbohydrate constituents of glycoproteins and a study of the selectivity of alkaline borohydride reductions. Carbohydr. Res. 138:189–198 (1985).

    Article  PubMed  CAS  Google Scholar 

  73. E. F. Hounsell, N.J. Pickering, M.S. Stoll, A.M. Lawson and T. Feizi, The effect of mild alkali and alkaline borohydride on the carbohydrate and peptide moieties of fetuin. Biochem. Soc. Trans. 12:607–610 (1984).

    PubMed  CAS  Google Scholar 

  74. H. Debray, G. Strecker and J. Montreuil, Effect of alkalis on N-glycosidic linkages of glycoproteins. Biochem. Soc. Trans. 12:611–612 (1984).

    PubMed  CAS  Google Scholar 

  75. K. Tanaka and W. Pigman, Improvements in hydrogenation procedure for demonstration of 0-threonine glycosidic linkages in bovine submaxillary mucin. J. Biol. Chem. 240:PC1487–1488 (1965).

    PubMed  CAS  Google Scholar 

  76. A. Herp, A.M. Wu and J. Moschera, Current concepts of the structure and nature of mammalian salivary mucous glycoproteins. Mol. Cell. Biochem. 23:27–44 (1979).

    Article  PubMed  CAS  Google Scholar 

  77. F. Downs, C. Peterson, V.L.N. Murty and W. Pigman, Quantitation of the β-elimination reaction as used on glycoproteins. Int. J. Peptide Protein Res. 10:315–322 (1977).

    Article  CAS  Google Scholar 

  78. J.F.G. Vliegenthart, L. Dorland and H. Van Halbeek, High resolution 1H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins. Adv. Carbohydr. Chem. Biochem. 41:209–374 (1983).

    Article  CAS  Google Scholar 

  79. K. Dill, Natural-abundance, 13C-nuclear magnetic resonance spectral studies of carbohydrates linked to amino acids and proteins. Adv. Carbohydr. Chem. Biochem. 43:1–49 (1985).

    Article  PubMed  CAS  Google Scholar 

  80. J.H.G.M. Mutsaers, H. Van Halbeek, J.F.G. Vliegenthart, A.M. Wu, and E.A. Kabat, Typing of core and backbone domains of mucin-type oligosaccharides from human ovarian- cyst glycoproteins by 500-MHz 1H-NMR spectroscopy. Eur. J. Biochem. 157:139–146 (1986).,

    Article  PubMed  CAS  Google Scholar 

  81. P.A. Denny and P.C. Denny, A mouse submandibular sialomucin containing both N- and O-glycosylic linkages. Carbohydr. Res. 110:305–314 (1982).

    Article  PubMed  CAS  Google Scholar 

  82. A.V. Nieuw Amerongen, C.H. Oderkerk, P.A. Roukema, J.H. Wolf, J.J.W. Lisman and B. Overdijk, Murine submandibular mucin (MSM): a mucin carrying N — and O-glycosylically bound carbohydrate-chains. Carbohydr. Res. 115:C1-C5 (1983).

    Article  CAS  Google Scholar 

  83. A.M. Wu, A. Slomiany, A. Herp and B.L. Slomiany, Structural studies on the carbohydrate units of armadillo submandibular glycoprotein. Biochim. Biophys. Acta 575: 297–304 (1979).

    Google Scholar 

  84. A. Slomiany and B.L. Slomiany, Structures of the acidic oligosaccharides isolated from rat sublingual glycoprotein. J. Biol. Chem. 253:7301–7306 (1978).

    PubMed  CAS  Google Scholar 

  85. H.P. Buscher, J.Casals-Stenzel and R. Schauer, Identification of N-glycoloyl-O-acetylneuraminic acids and N-acety1-O-glycoloylneuraminic acids by improved methods for detection of N-acyl and O-acyl groups and by gas-liquid chromatography. Eur. J. Biochem. 50:71–82 (1974).

    Article  PubMed  CAS  Google Scholar 

  86. G. Reuter, R. Pfeil, S. Stoll, R. Schauer, Identification of new sialic acids derived from glycoprotein of bovine submandibular gland. Eur. J. Biochem. 134:139–143 (1983).

    Article  PubMed  CAS  Google Scholar 

  87. J.P. Kamerling, J.F.G. Vliegenthart, C.Versluis and R. Schauer, Identification of O-acetylated N-acylneuraminic acid by mass spectrometry. Carbohydr. Res. 41:1–11 (1975).

    Article  Google Scholar 

  88. B.L.Slomiany, A.Slomiany and A. Herp, Studies on the occurrence of disialosyl groups in glycoproteins of salivary glands. Eur. J. Biochem. 90:255–266 (1978).

    Google Scholar 

  89. S. Ando and R.K. Yu, Isolation and characterization of a novel trisialoganglioside, GTLA from human brain. J. Biol. Chem. 252:6247–6250 (1977).

    PubMed  CAS  Google Scholar 

  90. H.S. Slayter, G. Lamblin, A. Lreut, C. Galabert, N. Houdret, P. Degand and P. Roussel, Complex structure of human bronchial mucus glycoprotein. Eur. J. Biochem. 242:209–218 (1984).

    Article  Google Scholar 

  91. M.W. Leigh, P-W. Cheng, J.L. Carson and T.F. Boat, Developmental changes, in glycoconjugate secretion by ferret tracheas. Am. Rev. Respir. Dis. 234:784–790(1986).

    Google Scholar 

  92. B.L. Slomiany and K. Meyer, Isolation and structural studies of sulfated glycoproteins of hog gastric mucosa. J. Biol. Chem. 247:5062–5070 (1972).

    PubMed  CAS  Google Scholar 

  93. M. Bertolini and W. Pigman, The existence of oligosaccharides in bovine and ovine submaxillary mucins, Carbohydr. Res. 24::53–63. (1970).

    Google Scholar 

  94. T. Tsuji and T. Osawa, Carbohydrate structures of bovine submaxillary mucin. Carbohyd. Res. 151:391–402 (1986).

    Article  CAS  Google Scholar 

  95. C.G. Lombart and R.J. Winzler, Isolation and characterization of oligosaccharides from canine submaxillary mucin. Eur. J. Biochem. 49:11–86 (1974).

    Article  Google Scholar 

  96. B. Dutta and C.V.N. Rao, Structures of carbohydrate chains of glycoprotein isolated from goat submaxillary mucin. Biochim. Biophys. Acta 701:12–85 (1982).

    Article  Google Scholar 

  97. M.S. Reddy, M.J. Levine and A. Prakobphol, Oligosaccharide structures of the low-molecular-weight salivary mucin from a normal individual and one with cystic fibrosis. J. Dent. Res. 64:33–36 (1985).

    Article  PubMed  CAS  Google Scholar 

  98. D.H. Van Den Eijnden, W.E.C.M.Schiphorst and E.G. Berger, Specific detection of N-acetylglucosamine containing oligosaccharide chains on ovine submaxillary asialomucin. Biochim. Biophy. Acta 755:32–39 (1983).

    Google Scholar 

  99. H. Van Halbeek, L. Dorland, J. Haverkamp, G.A. Veldink, J.F.G. Vliegenthart, B. Fournet, G. Ricart, J. Montreuil, W. Gathmann and D. Aminoff, Structure determination of oligosaccharides isolated from A+, H+ and A-H- hog- submaxillary gland mucin glycoproteins, by 3 60-MHz 1H-nmr spectroscopy, permethylation analysis and mass spectrometry. Eur. J. Biochem. 118:487–495 (1981).

    Article  PubMed  Google Scholar 

  100. A. V. Savage, P.L. Koppen, W.E.C.M. Schiphorst, L.A.W. Trippelitz, H. Van Halbeek, J.F.G. Vliegenthart and D.H. Van Den Eijnden, Porcine submaxillary mucin contains α2->3 and α2→6-linked N-acetyl- and N-glycolyl-neuraminic acid. Eur. J. Biochem. 160:123–129 (1986).

    Article  PubMed  CAS  Google Scholar 

  101. N. Payza, L. Martinez and W. Pigman, Immunological and chemical studies on porcine submaxillary mucins. Anim. Blood Groups. Biochem. Genet. 1:195–206 (1970).

    CAS  Google Scholar 

  102. R.C. Caldwell and W. Pigman, The carbohydrates of human submaxillary glycoproteins in secretors and non-secretors of blood group substances. Biochim. Biophys. Acta 101:157–165 (1965).

    PubMed  CAS  Google Scholar 

  103. M. Brockhaus, M. Wysocka, J.L. Magnani, Z. Steplewski, H. Koprowski and V. Ginsburg, Normal salivary mucin contains the gastrointestinal cancer-associated antigen detected by monoclonal antibody 19–9 in the serum mucin of patients. Vox Sang. 48:34–38 (1985).

    Article  PubMed  CAS  Google Scholar 

  104. J.M. Wieruszeski, J.C. Michalski, J. Montreuil, G. Strecker, J.P. Katalinic, H. Egge, H. van Halbeek, J.H.G.M. Mutsaers, and J.F.G. Vliegenthart, Structure of the monosialyl oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese swiftlet (genus Collocalla) Characterization of novel types of extended core structure, Galβ(1→3) [GlcNAcβ (1→6)] GalNAcα (1→3) GalNAc(-ol), and of chain termination, [Galα (1→4)] o-1 [Galβ(1→4)]2 GlcNAcβ (1→). J. Biol. Chem. 2 62:6650–6657 (1987).

    Google Scholar 

  105. Gottschalk, The basic structure of glycoproteins and problems of their chemical and physicochemical analysis. N.Y. Acad. Sci. 106:168–176 (1963).

    Article  CAS  Google Scholar 

  106. K. Barrett-Bee, G. Bedford and P. Loftus, The use of high resolution carbon-13 NMR in the study of mucus. Adv. Exp. Med. Biol. 144:109–111 (1982).

    PubMed  CAS  Google Scholar 

  107. G.P. Sachdev, J.M. Zodrow and R. Carubelli, Hydrophobic interaction of fluorescent probes with fetuin, ovine submaxillary mucin and canine tracheal mucins. Biochim. Biophys. Acta 580:85–90 (1979).

    PubMed  CAS  Google Scholar 

  108. A.Allen, Mucus — a protective secretion of complexity. Trends Biochem. Sci. 8:169–173 (1983).

    Article  Google Scholar 

  109. G.P. Roberts, The role of disulfide bonds in maintaining the gel structure of bronchial mucus. Arch. Biochem. Biophys. 173:528–537 (1976).

    Article  PubMed  CAS  Google Scholar 

  110. A.0. Jenssen and 0. Smidsrod, Preparation of enzymatically active lysozyme from sputum and its distribution between the sol and gel phases. Eur. J. Respir. Dis. 63:584–590 (1982).

    PubMed  CAS  Google Scholar 

  111. N. Houdret, G. Lamblin, A. Scharfman, D.Humbert and P. Roussel, Activation of bronchial mucin proteolysis by 4- aminophenylmercuric acetate and disulfide reducing agents. Biochim. Biophys. Acta 755:24–29 (1983).

    Google Scholar 

  112. I.P. Williams, R.L. Hall, R.J. Miller and P.S. Richardson, Analyses of human tracheobronchial mucus from healthy subjects. Eur. J. Respir. Dis. 63:510–515 (1982).

    Google Scholar 

  113. P. Roussel, G. Lamblin, N. Houdret, M. Lhermitte and H.S. Slayter, Conformation of human mucus glycoproteins observed by electron microscopy. Biochem. Soc. Trans. 12:617–618 (1984).

    PubMed  CAS  Google Scholar 

  114. A. Gottschalk and H.A. Menzie, Studies on mucoproteins. VIII. On the molecular size and shape of ovine submaxillary gland mucoprotein. Biochim. Biophys. Acta 54:226–235 (1961).

    Article  PubMed  CAS  Google Scholar 

  115. H.D. Hill, Jr., J.A. Reynolds and R.L. Hill, Purification, composition, molecular weight, and subunit structure of ovine submaxillary mucin. J. Biol. Chem. 252:3791–3793 (1977).

    PubMed  CAS  Google Scholar 

  116. H.D. Hill, Jr., M. Schwyzer, H.M. Steiman and R.L. Hill, Ovine submaxillary mucin. Primary structure and peptide substrates of UDP-N-acetylgalactosamine:mucin transferase. J. Biol. Chem. 252:3799–3804 (1977).

    PubMed  CAS  Google Scholar 

  117. J.P. Aubert, G. Biserte, and M.H. Loucheux-Lefebvre, Carbohydrate-peptide linkage in glycoproteins. Arch. Biochem. Biophys. 175:410–418 (1978).

    Article  Google Scholar 

  118. N.J. Maeji, T. Inoue, and R. Chujo, The role of the N- acetyl group in determining the conformation of 2 acetamido-2-deoxy-D-galactopyranosyl-threonine-containing peptides. Carbohydr. Res. 162:C4-C8 (1987).

    Article  CAS  Google Scholar 

  119. V.P. Bhavanandan and J.D. Hegarty, Identification of the mucin core protein by cell-free translation of messenger RNA from bovine submaxillary glands. J. Biol. Chem. 262:5913–5917 (1987).

    PubMed  CAS  Google Scholar 

  120. M.C. Rose, W.A. Voter, H. Sage, ’ C.F. Brown and B. Kaufman, Effects of deglycosylation of the architecture of ovine submaxillary mucin glycoprotein. J. Biol. Chem. 259;3167–3172 (1984).

    PubMed  CAS  Google Scholar 

  121. N. Jentoft, R.S. Shogren and T. A. Gerken, The conformation of mucins and O-glycosylated membrane proteins. Federation Proc. 45:2150 (1987).

    Google Scholar 

  122. R.L. Shogren, N. Jentoft, T.A. Gerken, A.M. Jamieson, and J. Blackwell, Light-scattering studies of fractionated ovine submaxillary mucin. Carbohydr. Res. 160:311–328 (1987).

    Google Scholar 

  123. R. Shogren, A.M. Jamieson and J. Blackwell, Solution properties of porcine submaxillary mucin. Biopolymers 22:1657–1675 (1983).

    Article  PubMed  CAS  Google Scholar 

  124. W.T.J. Morgan and W.M. Watkins, The inhibition of the haemmagglutinins in plant seeds by human blood group substances and simple sugars. Brit. J. Exp. Pathol. 34:94–103 (1953).

    CAS  Google Scholar 

  125. H. Lis and N. Sharon, Lectins as molecules and as tools. Ann. Rev. Biochem. 55:35–67 (1986).

    Article  PubMed  CAS  Google Scholar 

  126. G. Ashwell and J. Harford, Carbohydrate-specific receptors of the liver. Ann. Rev. Biochem. 51:531–554 (1982).

    Article  PubMed  CAS  Google Scholar 

  127. I.E. Liener, N. Sharon, and I.J. Goldstein, The Lectins. Properties, Functions, and Applications in Biology and Medicine. Academic Press, Orlando, FL, (1986).

    Google Scholar 

  128. I.J. Goldstein and I.E. Etzler, Chemical Toxonomy, Molecular Biology and Function of Plant Lectins. Alan R. Liss. New York, (1983).

    Google Scholar 

  129. G.G. Sahagian, The mannose 6-phosphate receptor: function, biosynthesis and translocation. Biol. Cell 51:207–214 (1984).

    PubMed  CAS  Google Scholar 

  130. M. A. Lehrman and R.L. Hill, The binding of fucose containing glycoproteins by hepatic lectins. Purification of a fucose-binding lectin from rat liver. J. Biol. Chem. 261:7419–7425 (1986).

    PubMed  CAS  Google Scholar 

  131. E.F. Neufeld and G. Ashwell, Carbohydrate recognition systems for receptor-mediated pinocytosis. In The Biochemistry of Glycoproteins and Proteoglycans (W.J. Lennarz, Ed.). Plenum Press, New York, pp 241–266 (1980).

    Google Scholar 

  132. A.M. Wu, Differential binding characteristics and applications of DGalβ1→3DGalNac specific lectins, Mol. Cell. Biochem. 61:131–141 (1984).

    Article  CAS  Google Scholar 

  133. A.M. Wu and A. Herp, A table of lectin carbohydrate specificities. In Lectins (T.C. Bøg-Hansen and J. Breborowicz, Eds.). W. de Gruyter & Co., New York, Vol. IV., pp 629–636, (1985).

    Google Scholar 

  134. P.J.A. Holt, J.H. Anglin and R.E. Nordquist, Localization of specific carbohydrate configurations in human skin using fluorescein-labeled lectins. Br. J. Dermatol. 100:237–245 (1979).

    Article  PubMed  CAS  Google Scholar 

  135. G.L. Nicolson and S.J. Singer, The distribution and asymmetry of mammalian cell surface saccharides utilizing ferritin-conjugated plant agglutinins as specific saccharide stains. J. Cell Biol. 60:236–248 (1974).

    Article  PubMed  CAS  Google Scholar 

  136. K. Burridge, Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels, Methods Enzymol. 50:54–64 (1978).

    Article  PubMed  CAS  Google Scholar 

  137. E.V. Crean and E.F. Rosomando, Developmental changes in membrane-bound enzymes of Dictyostelium discoideum detected by concanavalin A-Sepharose affinity chromatography. Biochem. Biophys. Res. Commun. 75:488–495 (1977).

    Article  PubMed  CAS  Google Scholar 

  138. I.J. Goldstein, C.E. Hollerman and E.E. Smith, Protein- carbohydrate interaction. II. Inhibition studies on the interaction of concanavalin A with polysaccharides. Biochemistry 4:876–883 (1965).

    Article  PubMed  CAS  Google Scholar 

  139. Y.Ch. Sekharudu, M. Biswas and V.S.R. Rao, Complex Carbohydrates: 2. The modes of binding of complex carbohydrates to concanavalin A-a computer modelling approach. Int. J. Biol. Marcomol:8:9–19 (1986).

    Article  CAS  Google Scholar 

  140. A.M. Wu, E.A. Rabat, F.G. Gruezo, and H.J. Allen, Immunochemical studies on the combining site of the D- galactopyranose and 2-acetamido-2-deoxy-D-galactopyranose specific lectin isolated from Bauhinia purpurea alba seeds. Arch. Biochem. Biophys 204:622–639 (1980).

    Article  PubMed  CAS  Google Scholar 

  141. D. A. Baker, S. Sugii, E.A. Rabat, R.M. Ratcliffe, P. Hermentin and R.U. Lemieux, Immunochemical studies on the combining sites of Forssman hapten reactive hemagglutinins from Dolichos biflorus, Helix pomatia, and Wistaria floribunda. Biochemistry 22:2741–2750 (1983).

    Article  PubMed  CAS  Google Scholar 

  142. E.A. Rabat, A. Bendich, A. E. Bezer, and S.M. Beiser, Immunochemical studies on blood groups. IV. Preparation of blood group A substances from human sources and a comparison of their chemical and immunochemical properties with those of the blood group A substance from hog stomach. J. Exp. Med. 85:685–699 (1947).

    Article  Google Scholar 

  143. E. A. Rabat, A. Bendich, A. E. Bezer and V. Knaub, Immunochemical studies on blood groups. VI. The cross- reaction between type XIV antipneumococcal horse serum and purified blood group A, B, and 0 substances from hog and human sources, J. Exp. Med. 87:295–300 (1948).

    Article  Google Scholar 

  144. H.H. Baer, E.A. Kabat, and V. Knaub, Immunochemical studies on blood groups. X. The preparation of blood group A and B substances and an inactive substance from individual horse stomachs and of blood group B substance from human saliva. J. Exp. Med. 91, 105–114 (1950).

    Article  PubMed  CAS  Google Scholar 

  145. W.M. Watkins, Blood group specific substances. In Glycoproteins, 2nd ed. (A. Gottschalk, ed.). Part B. pp 830–891.(1972) Elsevier Publ., New York.

    Google Scholar 

  146. A.M. Wu, E.A. Kabat, F.G. Gruezo and R.D. Poretz, Immunochemical studies on the reactivities and combining sites of the D-galactopyranose- and 2-acetamido-2-deoxy-D- galactopyranose-specific lectin purified from Sophora japónica seeds. Arch. Biochem. Biophys. 209:191–203 (1981).

    Article  PubMed  CAS  Google Scholar 

  147. M.S. Sarkar, A.M. Wu and E. A. Kabat, Immunochemical studies on the carbohydrate specificity of Madura pomífera lectin, Arch Biochem. Biophys. 209:204–218 (1981).

    CAS  Google Scholar 

  148. Y. Takai, Y. Noda, S. Sumitono, S. Sagara and M. Mori, Different bindings to lectin in human submandibular gland after enzymatic digestion. Acta Histochem. 78:111–121 (1986).

    PubMed  CAS  Google Scholar 

  149. M.E.A. Pereira, E.A. Kabat, R. Lotan, and N. Sharon, Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin, Carbohyd. Res. 51:107–118 (1976).

    CAS  Google Scholar 

  150. T. Irimura and T. Kawaguchi, T. Terao and T. Osawa, Carbohydrate-binding specificities of the so-called galactose-specific phytohemagglutinins. Carbohyd. Res. 39: 317–327 (1975).

    Article  CAS  Google Scholar 

  151. T Osawa, T. Irimura and T. Kawaguchi, Bauhinia purpurea agglutinin. Methods Enzymol. 50:361–312 (1978).

    Google Scholar 

  152. A.C. Roche, R. Schauer and M. Monsigny, Protein-sugar interactions. Purification by affinity chromatography of limulin, and N-acyl-neuraminidyl-binding protein, FEBS Let. 57:245–249 (1975).

    Article  CAS  Google Scholar 

  153. K. Furukawa, J.E. Minor, J.D. Hegarty and V.P. Bhavanandan, Interaction of sialoglycoproteins with wheat germ agglutinin-Sepharose of varying ratio of lectin to Sepharose. Use for the purification of mucin glycoproteins from membrane extracts. J. Biol. Chem. 261:1155-7761 (1986).

    Google Scholar 

  154. V.P. Bhavanandan and A.W. Katlic, The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J. Biol. Chem. 254:4000–4008 (1979).

    PubMed  CAS  Google Scholar 

  155. T. Menghi, A.M. Bondi, D. Accili, L. Fumagalli and G. Materazzi, Characterizationin situ of the complex carbohydrates in rabbit oviduct using digestion with glycosidases followed by lectin binding, J. Anat. 140:613–625 (1985).

    PubMed  CAS  Google Scholar 

  156. T. Faraggiana, D. Villari, J. Jagirdar and J. Patil, Expression of sialic acid on the alveolar surface of adult and fetal human lungs. J. Histochem. Cytochem. 34:811–816 (1986).

    Article  PubMed  CAS  Google Scholar 

  157. S.A. Laden, B.A. Schulte and S.S. Spicer, Histochemical evaluation of secretory glycoproteins in human salivary glands with lectin-horseradish peroxidase conjugates. J. Histochem. Cytochem. 32:965–972 (1984).

    Article  PubMed  CAS  Google Scholar 

  158. B.A. Schulte and S.S. Spicer, Light microscopic detection of sugar residues in glycoconjugates of salivary glands and the pancreas with lectin-horseradish peroxidase conjugates. I. Mouse. Histochem. J. 15:1217–1238

    Google Scholar 

  159. B.A. Schulte and S.S. Spicer, Light microscopic detection of sugar residues in glycoconjugates of salivary glands and the pancreas with horseradish-peroxidase conjugates. II. Rat. Histochem. J. 16:3–20 (1984).

    Article  CAS  Google Scholar 

  160. P.A. Murray, M.J. Levine, L. A. Tabak and M.S. Reddy, Purification of a sialic acid binding lectin from Streptococcus mitis. Soc. Complex Carbohydr. Annual Meeting, 44 (1983).

    Google Scholar 

  161. O. Sobeslavsky, B. Prescott and R.M. Chanock, Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence. J. Bacteriol. 96:695–705 (1968).

    PubMed  CAS  Google Scholar 

  162. B.C. McBride and M.T. Gisslow, Role of sialic acid in saliva-induced aggregation of Streptococcus sanguis. Infect. Immun. 18:35–40 (1977).

    PubMed  CAS  Google Scholar 

  163. M.J. Levine, M.C. Herzberg, M.S. Levine, S.A. Ellison, M.W. Stinson, H.C. Li and T. van Dyke, Specificity of salivary-bacterial interactions: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect. Immun. 19:101–115 (1978).

    Google Scholar 

  164. T.Ericson and J. Rundegen, Characterization of a salivary agglutinin with a serotype c strain of Streptococcus mutans. Eur. J. Biochem. 133:255–261 (1983).

    Article  Google Scholar 

  165. C.W.I. Douglas and R.R.B. Russell, The adsorption of human salivary components to strains of the bacterium Streptococcus mutans. Arch. Oral Biol. 25:751–757.(1984)

    Article  Google Scholar 

  166. J.P. Babu, S.N. Abraham, M.K. Dabbous and E.H. Beachey, Interaction of a 60-kilodalt on D-mannose-cont aining salivary glycoprotein with type i fimbriae of Escherichia coli. Infect. Immun. 54:104–108 (1986).

    PubMed  CAS  Google Scholar 

  167. T. Feizi, Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 314:53–57 (1985).

    Article  PubMed  CAS  Google Scholar 

  168. C.E. Snyder, C.E. Nadziejko and A. Herp, Human bronchial explants in long-term culture: establishing a baseline for secretion. In Vitro 20:95–102 (1984).

    Article  CAS  Google Scholar 

  169. D.A. Sens, D.S. Hintz, M.T. Rudisiii, M.A. Sens and S.S. Spicer, Methods in laboratory investigation. Explant culture of human submandibular gland epithelial cells: evidence of ductal origin. Lab. Invest. 52:557–567 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Herp, A., Borelli, C., Wu, A.M. (1988). Biochemistry and Lectin Binding Properties of Mammalian Salivary Mucous Glycoproteins. In: Wu, A.M., Adams, L.G. (eds) The Molecular Immunology of Complex Carbohydrates. Advances in Experimental Medicine and Biology, vol 228. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1663-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1663-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8923-4

  • Online ISBN: 978-1-4613-1663-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics