Skip to main content

Mechanism Underlying the Membrane-Stabilizing Activity of Taurine

  • Chapter
Taurine and the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 93))

Abstract

Taurine is a β-amino acid found in very high concentration in excitable tissues [1]. Although the amino acid was discovered over 150 years ago, the only established role of taurine is conjugation with bile acids [1]. Yet, recent evidence has led to the view that taurine must have other physiological functions. One idea that has received considerable attention is that taurine serves as a stabilizer of biological membranes. This concept was originally proposed by Huxtable and Bressler [2], who showed that taurine protected sarcoplasmic reticulum from damage caused by either isolation of the membrane fraction or incubation of the membrane preparation with phospholipase C. Kramer et al. [3] provided further support for this hypothesis when they discovered that reduction in cellular damage resulting from the treatment of failing hearts with taurine was associated with an improvement in sarcolemmal function. Membrane stabilization has also been implicated in the ability of taurine to protect rod outer segments against light-induced lipid peroxidation [4], lymphoblastoid cells against iron-ascorbate-induced damage [5], and spermatozoa against loss of motility [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacobsen JG, Smith LH Jr. 1968. Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511.

    PubMed  CAS  Google Scholar 

  2. Huxtable R, Bressler R. 1973. Effect of taurine on a muscle intracellular membrane. Biochim Biophys Acta 323:573–583.

    Article  PubMed  CAS  Google Scholar 

  3. Kramer JH, Chovan JP, Schaffer SW. 1981. Effect of taurine on calcium paradox and ischemic heart failure. Am J Physiol 240:H238-H246.

    PubMed  CAS  Google Scholar 

  4. Pasantes-Morales H, Cruz C. 1985. Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structure. Brain Res 330:154–157.

    Article  PubMed  CAS  Google Scholar 

  5. Pasantes-Morales H, Wright CE, Gaull GE. 1985. Taurine protection of lymphoblastoid cells from iron-ascorbate induced damage. Biochem Pharmacol 34:2205–2207.

    Article  PubMed  CAS  Google Scholar 

  6. Alvarez JG, Storey BT. 1983. Taurine hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol Reprod 29: 548–555.

    Article  PubMed  CAS  Google Scholar 

  7. Kulakowski EC, Maturo J, Schaffer SW. 1981. Solubilization and characterization of cardiac sarcolemmal taurine-binding proteins. Arch Biochem Biophys 210:204–209.

    Article  PubMed  CAS  Google Scholar 

  8. Sebring LA, Huxtable RJ. 1986. Low affinity binding of taurine to phospholiposomes and cardiac sarcolemma. Biochim Biophys Acta 884:559–566.

    PubMed  CAS  Google Scholar 

  9. Chovan JP, Kulakowski EC, Benson BW, Schaffer SW. 1979. Taurine enhancement of calcium binding to rat heart sarcolemma. Biochim Biophys Acta 551:129–136.

    Article  PubMed  CAS  Google Scholar 

  10. Mozaffari MS, Tan BH, Lucia MA, Schaffer SW. 1986. Effect of drug-induced taurine depletion on cardiac contractility and metabolism. Biochem Pharmacol 35:985–989.

    Article  PubMed  CAS  Google Scholar 

  11. Garland PB, Shepherd D, Yates DW. 1965. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem J 97:587–594.

    PubMed  CAS  Google Scholar 

  12. Williamson JR, Corkey BE. 1969. Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme methods. Methods Enzymol 13:434–513.

    Article  CAS  Google Scholar 

  13. Idell-Wenger JA, Grotyohann LW, Neely JR. 1978. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253:4310–4318.

    PubMed  CAS  Google Scholar 

  14. McGarry JD, Foster DW. 1976. An improved and simplified radioisotopic assay for the determination of free and esterified carnitine. J Lipid Res 17:277–281.

    PubMed  CAS  Google Scholar 

  15. Adams JD Jr, Lauterburg BH, Mitchell JR. 1983. Plasma glutathione and glutathione disulfide in the rat: Regulation and response to oxidative stress. J Pharmacol Exp Therap 227:749–754.

    CAS  Google Scholar 

  16. Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thio-barbituric acid reaction. Anal Biochem 95:351–358.

    Article  PubMed  CAS  Google Scholar 

  17. Alto LE, Dhalla NS. 1979. Myocardial cation contents during induction of calcium paradox. Am J Physiol 237:H713-H719.

    PubMed  CAS  Google Scholar 

  18. Schaffer SW, Allo S, Mozaffari M. 1987. Potentiation of myocardial ischemic injury by drug-induced taurine depletion. In The biology of taurine: Methods and mechanisms, Huxtable RJ, Franconi F, Giotti A, eds. New York: Plenum Press, pp 151–158.

    Google Scholar 

  19. Katz AM, Messineo FC. 1981. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48:1–16.

    PubMed  CAS  Google Scholar 

  20. Mak IT, Kramer JH, Weglicki WB. 1986. Potentiation of free radical-induced lipid peroxida-tive injury to sarcolemmal membranes by lipid amphiphiles. J Biol Chem 261:1153–1157.

    PubMed  CAS  Google Scholar 

  21. Azuma J, Hamaguchi T, Ohta H, Takihara K, Awata N, Sawamura A, Harada H, Tanaka Y, Kishimoto S. 1987. Calcium overload-induced myocardial damage caused by isoproterenol and by adriamycin: Possible role of taurine in its prevention. In The biology of taurine: Methods and mechanisms, Huxtable R, Franconi F, Giotti A, eds. New York: Plenum Press, pp 167–179.

    Google Scholar 

  22. Hayes KC, Carey RE, Schmidt SY. 1975. Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951.

    Article  PubMed  CAS  Google Scholar 

  23. Hayes KC, Stephan ZF, Sturman JA. 1980. Growth depression in taurine-depleted infant monkeys. J Nutr 110:2058–2064.

    PubMed  CAS  Google Scholar 

  24. Sturman JA, Moretz RC, French JH, Wisniewski HM. 1985. Taurine deficiency in the developing cat: Persistence of the cerebellar external granule cell layer. J Neurosci Res 13:405–416.

    Article  PubMed  CAS  Google Scholar 

  25. Sturman JA, Moretz RC, French JH, Wisniewski HM. 1985. Postnatal taurine deficiency in the kitten results in a persistence of the cerebellar external granule cell layer: Correction by taurine feeding. J Neurosci Res 13:521–528.

    Article  PubMed  CAS  Google Scholar 

  26. Pasantes-Morales H, Quesada O, Cárabez A, Huxtable RJ. 1983. Effects of the taurine transport antagonist, guanidinoethane sulfonate, and ß-alanine on the morphology of rat retina. J Neurosc Res 9:135–143.

    Article  CAS  Google Scholar 

  27. Sawamura A, Sperelakis N, Azuma J, Kishimoto S. 1986. Effects of taurine on the electrical and mechanical activities of embryonic chick heart. Can J Physiol Pharmacol 64:649–655.

    Article  PubMed  CAS  Google Scholar 

  28. Welty MC, Welty JD, McBroom MJ. 1982. Effect of isoproterenol and taurine on heart calcium in normal and cardiomyopathic hamsters. J Mol Cell Cardiol 14:353–357.

    Article  PubMed  CAS  Google Scholar 

  29. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE. 1982. Calcium movements in relation to heart function. Basic Res Cardiol 77:117–139.

    Article  PubMed  CAS  Google Scholar 

  30. Neely JR, Rovetto MJ, Oram JF. 1972. Myocardial utilization of carbohydrate and lipids. Prog Cardiovas Dis 15:289–329.

    Article  CAS  Google Scholar 

  31. Lamers JMJ, Stinis HT, Montfoort A, Hülsmann WC. 1984. The effect of lipid intermediates on Ca2+ and Na+ permeability and (Na+ + K+)-ATPase of cardiac sarcolemma. Biochim Biophys Acta 774:127–137.

    Article  PubMed  CAS  Google Scholar 

  32. Adams RJ, Cohen DW, Gupte S, Johnson JD, Wallick ET, Wang T, Schwartz A. 1979. In vitro effects of palmitylcarnitine on cardiac plasma membrane Na,K-ATPase, and sarcoplasmic reticulum Ca2+-ATPase and Ca2+ transport. J Biol Chem 254:12404–12410.

    PubMed  CAS  Google Scholar 

  33. Inoue D, Pappano AJ. 1983. L-Palmitylcarnitine and calcium ions act similarly on excitatory ionic currents in avian ventricular muscle. Circ Res 52:625–634.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Schaffer, S.W., Allo, S., Harada, H., Stroo, W., Azuma, J., Hamaguchi, T. (1989). Mechanism Underlying the Membrane-Stabilizing Activity of Taurine. In: Iwata, H., Lombardini, J.B., Segawa, T. (eds) Taurine and the Heart. Developments in Cardiovascular Medicine, vol 93. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1647-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1647-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8915-9

  • Online ISBN: 978-1-4613-1647-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics