Skip to main content

Architectural Yield Optimization

  • Chapter
Wafer Scale Integration

Abstract

Fabrication of integrated circuits or systems that span an entire wafer or a significant part of a wafer have held the interest of a number of semiconductor researchers [1]. The expected benefits of smaller size, increased reliability, reduced cost, shorter signal delays, and simpler packaging are significant. Unfortunately, most of the previously reported attempts have been surpassed by increased density, improved circuitry, and better packaging of conventional integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. R. Strader and J. S. Kilby, “Wafer Scale Integration — Historical Perspective,” Semiconductor Research Corporation Workshop, Wafer Scale Integration: An Assessment, September, 1984.

    Google Scholar 

  2. R. L. Petritz, “Current State of Large Scale Integration Technology,” Proceedings of the Fall Joint Computer Conference, pp. 65–85, 1967.

    Google Scholar 

  3. R. C. Aubusson and I. Catt, “Wafer-Scale Integration — A Fault-Tolerant Procedure,” IEEE Journal of Solid-State Circuits, vol. SC-13, pp. 339–344, 1978.

    Article  Google Scholar 

  4. D. F. Calhoun, “The Pad Relocation Technique for Interconnecting LSI Arrays of Imperfect Yield,” Proceedings of the Fall Joint Computer Conference, pp. 99–109, 1969.

    Google Scholar 

  5. F. B. Manning, “An Approach to Highly Integrated, Computer-Maintained Cellular Arrays,” IEEE Transactions on Computers, vol. C-26, pp. 536–552, 1977.

    Article  Google Scholar 

  6. F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, “Diogenes: A Methodology for Designing Fault-Tolerant VLSI Processor Arrays,” Proceedings of the 13th International Symposium on Fault-Tolerant Computing, pp. 26–32, 1983.

    Google Scholar 

  7. A. L. Rosenberg, “The Diogenes Approach to Testable Fault-Tolerant Arrays of Processors,” IEEE Transactions on Computers, vol. C-32, pp. 902–910, 1983.

    Article  Google Scholar 

  8. T. E. Mangir and A. Avizienis, “Fault-Tolerant Design for VLSI: Effect of Interconnect Requirements on Yield Improvement of VLSI Designs,” IEEE Transactions on Computers, vol. C-31, pp. 609–615, 1982.

    Article  Google Scholar 

  9. T. E. Mangir, “Use of On-Chip Redundancy for Fault-Tolerant VLSI Design,” UCLA Computer Science Department, Report CSD-820201, February, 1982.

    Google Scholar 

  10. K. S. Hedlund, “Wafer Scale Integration of Parallel Processors,” Ph.D. dissertation, Purdue University, December, 1982.

    Google Scholar 

  11. K. S. Hedlund, “WASP — WAfer-scale Systolic Processor,” VLSI Design, pp. 70–71, July/August, 1983.

    Google Scholar 

  12. J. E. Price, “A New Look at Yield of Integrated Circuits,” Proceedings of the IEEE, vol. 58, pp. 1290–1291, 1970.

    Article  Google Scholar 

  13. T. Leighton and C. E. Leiserson, “Wafer-Scale Integration of Systolic Arrays,” IEEE Transactions on Computers, vol. C-34, pp. 448–461, 1985.

    Article  Google Scholar 

  14. J. I. Raffel, A. H. Anderson, G. H. Chapmann, S. L. Garverick, K. H. Konkle, B. Mathur, and A. M. Soares, “A Demonstration of Very Large Area Integration Using Laser Restructuring,” Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 781–784, May, 1983.

    Google Scholar 

  15. J. I. Raffel, A. H. Anderson, G. H. Chapmann, K. H. Konkle, B. Mathur, A. M. Soares, and P. W. Wyatt, “A Wafer-Scale Digital Integrator Using Restructurable VLSI,” IEEE Journal of Solid-State Circuits, vol. SC-20, pp. 399–406, 1985.

    Article  Google Scholar 

  16. C. Brown, “Researchers Attempt Wafer-Scale Integration,” Electronic Engineering Times, September 12, 1983.

    Google Scholar 

  17. D. L. Peltzer, “Wafer-Scale Integration: The Limits of VLSI?,” VLSI Design, pp. 43–47, September, 1983.

    Google Scholar 

  18. “Trilogy Ltd. Closes Semiconductor Line, Halves Work Force,” Wall Street Journal, vol. 74, p. 5, August 10, 1984.

    Google Scholar 

  19. C. H. Stapper, A. N. McLaren, and M. Dreckmann, “Yield Model for Productivity Optimization of VLSI Memory Chips with Redundancy and Partial Good Product,” IBM Journal of Research and Development, vol. 24, pp. 398–409, 1980.

    Article  Google Scholar 

  20. C. H. Stapper and R. J. Rosner, “A Simple Method for Modeling VLSI Yields,” Solid State Electronics, vol. 25, pp. 487–489, 1982.

    Article  Google Scholar 

  21. C. H. Stapper, R. P. Castrucci, R. A. Maeder, W. E. Rowe, and R. A. Verhelst, “Evolution and Accomplishments of VLSI Yield Management at IBM,” IBM Journal of Research and Development, vol. 26, pp. 532–544, 1982.

    Article  Google Scholar 

  22. C. H. Stapper, F. M. Armstrong, and K. Saji, “Integrated Circuit Yield Statistics,” Proceedings of the IEEE, vol. 71, pp. 453–470, 1983.

    Article  Google Scholar 

  23. C. H. Stapper, “Modeling of Integrated Circuit Defect Sensitivities,” IBM Journal of Research and Development, vol. 27, pp. 549–557, 1983.

    Article  Google Scholar 

  24. C. H. Stapper, “Modeling of Defects in Integrated Circuit Photolithographic Patterns,” IBM Journal of Research and Development, vol. 28, pp. 461–474, 1984.

    Article  Google Scholar 

  25. D. M. Stewart, “The Economics of Laser Repairing the One Megabit Dynamic RAM,” SEMICON/West, May, 1984.

    Google Scholar 

  26. D. M. Stewart, “Lasers Fix Dynamic RAMs,” Electronics Week, vol. 58, no. 5, pp. 45–49, February 4, 1985.

    Google Scholar 

  27. J. F. M. Bindels, J. D. Chilpala, F. H. Fischer, T. F. Mantz, R. G. Nelson, and R. T. Smith, “Cost-Effective Yield Improvement in Fault-Tolerant VLSI Memory,” IEEE International Solid-State Circuits Conference Digest, pp. 82–83, 1981.

    Google Scholar 

  28. K. Kokkonen, P. O. Sharp, R. Albers, J. Dishaw, F. Louie, and R. J. Smith, “Redundancy Techniques for Fast Static RAMs,” IEEE International Solid-State Circuits Conference Digest, pp. 80–81, 1981.

    Google Scholar 

  29. B. T. Murphy, “Cost-Size Optima of Monolithic Integrated Circuits,” Proceedings of the IEEE, vol. 52, pp. 1537–1545, 1964.

    Article  Google Scholar 

  30. B. T. Murphy, “Comments on ‘A New Look at Yield of Integrated Circuits’,” Proceedings of the IEEE, vol. 59, p. 1128, 1971.

    Article  Google Scholar 

  31. R. B. Seeds, “Yield, Economic, and Logistic Models for Complex Digital Arrays,” IEEE International Convention Record, Part 6, pp. 60–61, 1967.

    Google Scholar 

  32. W. G. Ansley, “Computation of Integrated-Circuit Yields from the Distribution of Slice Yields for the Individual Devices,” IEEE Transactions on Electron Devices, vol. ED-15, pp. 405–406, 1968.

    Article  Google Scholar 

  33. G. E. Moore, “What Level of LSI is Best for You?,” Electronics, vol. 43, pp. 126–130, February, 1970.

    Google Scholar 

  34. T. Okabe, M. Nagata, and S. Shimada, “Analysis on Yield of Integrated Circuits and a New expression for the Yield,” Electrical Engineering in Japan, vol. 92, pp. 135–141, December, 1972.

    Article  Google Scholar 

  35. R. M. Warner, Jr., “Applying a Composite Model to the IC Yield Problem,” IEEE Journal of Solid-State Circuits, vol. SC-9, pp. 86–95, 1974.

    Article  Google Scholar 

  36. R. M. Warner, Jr., “A Note on IC-Yield Statistics,” Solid-State Electronics, vol. 24, pp. 1045–1047, 1981.

    Article  Google Scholar 

  37. C. H. Stapper, “Defect Density Distribution for LSI Yield Calculations,” IEEE Transactions on Electron Devices, vol. ED-20, pp. 655–657, 1973.

    Article  Google Scholar 

  38. C. H. Stapper, “On a Composite Model to the IC Yield Problem,” IEEE Journal of Solid-State Circuits, vol. SC-10, pp. 537–539, 1975.

    Article  Google Scholar 

  39. C. H. Stapper, “LSI Yield Modeling and Process Monitoring,” IBM Journal of Research and Development, vol. 20. pp. 228–234, 1976.

    Article  Google Scholar 

  40. C. H. Stapper, “Comments on ‘Some Considerations in the Formulation of IC Yield Statistics’,” Solid State Electronics, vol. 24, pp. 127–132, 1981.

    Article  Google Scholar 

  41. C. H. Stapper, “Yield Model for 256K RAMs and Beyond,” IEEE International Solid-State Circuits Conference Digest, pp. 12–13, 1982.

    Google Scholar 

  42. A. B. Glaser and G. E. Subak-Sharpe, Integrated Circuit Engineering, Reading, MA: Addison-Wesley, 1979.

    Google Scholar 

  43. S. M. Hu, “Some Considerations in the Formulation of IC Yield Statistics,” Solid-State Electronics, vol. 22, pp. 205–211, 1979.

    Article  Google Scholar 

  44. A. Rogers, Statistical Analysis of Spatial Dispersions, London: Pion, Ltd., pp. 12–20, 1974.

    Google Scholar 

  45. R. S. Hemmert, “Poisson Process and Integrated Circuit Yield Predictions,” Solid-State Electronics, vol. 24, pp. 511–515, 1981.

    Article  Google Scholar 

  46. O. Paz, and T. L. Lawson, “Modification of Poisson Statistics: Modeling Defects Induced by Diffusion,” IEEE Journal of Solid-State Circuits, vol. SC-12, pp. 540–546, 1977.

    Article  Google Scholar 

  47. A. Gupta and J. A. Lathrop, “Yield Analysis of Large Integrated-Circuit Chips,” IEEE Journal of Solid-State Circuits, vol. SC-7, pp. 389–395, 1972.

    Article  Google Scholar 

  48. A. Gupta, W. A. Porter, and J. A. Lathrop, “Defect Analysis and Yield Degradation of Integrated Circuits,” IEEE Journal of Solid-State Circuits, vol. SC-9, pp. 96–102, 1974.

    Article  Google Scholar 

  49. H. Murrmann and D. Kranzer, “Yield Modeling of Integrated Circuits,” Siemens Forschungs und Entwicklung Berichte, vol. 9, pp. 38–40, February, 1980.

    Google Scholar 

  50. J. C. Harden and N. R. Strader II, “Architectural Yield Optimization for WSI,” IEEE Transactions on Computers, vol. C-37, pp. 88–110, 1988.

    Article  Google Scholar 

  51. G. A. Magó, “A Network of Microprocessors to Execute Reduction Languages,” Two Parts. International Journal of Computer and Information Sciences, vol. 8, pp. 349–385 and pp. 435–471, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  52. G. A. Magó, “A Cellular Computer Architecture for Functional Programming,” Proceedings of COMPCON, pp. 179–187, Spring, 1980.

    Google Scholar 

  53. J. Backus, “Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs,” Communications of the Association for Computing Machinery, vol. 8, pp. 613–641, 1978.

    Article  MathSciNet  Google Scholar 

  54. C. Mead and L. Conway, Introduction to VLSI Systems, Reading, MA: Addison-Wesley, 1980.

    Google Scholar 

  55. G. A. Magó and D. Middleton, “The FFP Machine — A Progress Report,” Proceedings of the International Workshop on High-Level Computer Architecture, Los Angeles, CA, May, 1984.

    Google Scholar 

  56. C. S. Raghavendra, A. Avizienis, and M. Ercegovac, “Fault-Tolerance in Binary Tree Architectures,” Proceedings of the 13th International Symposium on Fault-Tolerant Computing, pp. 360–364, 1983.

    Google Scholar 

  57. D. Gordan, I. Koran, and G. M. Silberman, “Embedding Tree Structures in VLSI Hexagonal Arrays,” IEEE Transactions on Computers, vol. C-33, pp. 104–108, 1984.

    Article  Google Scholar 

  58. J. C. Harden, “A Wafer Scale Cellular Tree Architecture,” Ph.D. dissertation, Texas A&M University, June, 1985.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Strader, N.R., Harden, J.C. (1989). Architectural Yield Optimization. In: Swartzlander, E.E. (eds) Wafer Scale Integration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1621-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1621-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8896-1

  • Online ISBN: 978-1-4613-1621-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics