Skip to main content

The ras family of oncogenes

  • Chapter
Oncogenes

Part of the book series: Cancer Treatment and Research ((CTAR,volume 47))

Abstract

The first evidence implicating a role for the cellular ras genes in oncogenesis came from studies of the highly oncogenic RNA tumor viruses [1–4]. The cellular ras genes were first identified to be the cellular counterparts to the viral genes responsible for the oncogenic properties of Harvey (v-H-ras) and Kirsten (v-K-ras) murine sarcoma viruses [5,6]. Further interest in the role of cellular ras genes in carcinogenesis exploded in 1982, when the first human transforming genes were identified as activated cellular counterparts of viral ras genes [7–9]. Over the past six years, an enormous research effort has centered on characterizing the biochemistry and biology of these potential human oncogenes. Of the 40 or so cellular oncogenes that have been identified to date, the cellular ras genes have demonstrated the strongest association with human carcinogenesis. The frequent identification of activated ras genes in a wide variety of human neoplasms has provided strong circumstantial evidence for the role of these genes in the malignant process. Consequently, it is generally believed that determining the mechanism of action of ras will contribute significantly to our understanding of the molecular mechanisms of human carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop JM: Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301–354, 1983.

    PubMed  CAS  Google Scholar 

  2. Varmus HE: The molecular genetics of cellular oncogenes. Annu Rev Genet 18:553–612, 1984.

    PubMed  CAS  Google Scholar 

  3. Bishop JM: The molecular genetics of cancer. Science 235:305–311, 1987.

    PubMed  CAS  Google Scholar 

  4. Der CJ: Cellular oncogenes and human carcinogenesis. Clin Chem 33:641–646, 1988.

    Google Scholar 

  5. DeFeo D, Gonda MA, Young HA, Chang EH, Lowy DR, Scolnick EM, Ellis RW: Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus. Proc Natl Acad Sci USA 78:3328–3332, 1981.

    PubMed  CAS  Google Scholar 

  6. Ellis RW, DeFeo D, Shih TY, Gonda MA, Young HA, Tsuchida H, Lowy DR, Scolnick EM: p21 sre genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature 292:506–511, 1981.

    PubMed  CAS  Google Scholar 

  7. Der CJ, Krontiris TG, Cooper GM: Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79:3637–3640, 1982.

    PubMed  CAS  Google Scholar 

  8. Parada LF, Tabin CJ, Shih C, Weinberg RA: Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature 297:474–478, 1982.

    PubMed  CAS  Google Scholar 

  9. Santos E, Tronick SR, Aaronson SA, Pulciani S, Barbacid M: T24 human bladder car-cinoma oncogene is an activated form of the normal human homologue of Balb- and Harvey-MSV transforming genes. Nature 298:343–347, 1982.

    PubMed  CAS  Google Scholar 

  10. Barbacid M: ras genes. Ann Rev Biochim 56:779–827, 1987.

    CAS  Google Scholar 

  11. Tamanoi F: Yeast ras genes. Biochim Biophys Acta 948:1–15, 1988.

    PubMed  CAS  Google Scholar 

  12. Lacal JC, Tronick SR: The ras oncogene. In: Reddy EP, Skalka AM, Curran T (eds): Oncogenes. Amsterdam: Elsevier Science Publishers, 1988, pp 257–304.

    Google Scholar 

  13. Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR: Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci USA 79:4848–4852, 1982.

    PubMed  CAS  Google Scholar 

  14. McGrath JP, Capon DJ, Smith DH, Chen EY, Seebury PH, Goeddel DV, Levinson AD: Structure and organization of the human Ki-ras proto-oncogene and a related processed pseudogene. Nature 304:501–506, 1983.

    PubMed  CAS  Google Scholar 

  15. Shimizu K, Goldfarb M, Suard Y, Perucho M, Li Y, Kamata T, Feramisco J, Stavnezer E, Fogh J, Wigler MH: Three human transforming genes are related to the viral ras oncogenes. Proc Natl Acad Sci USA 80:2112–2116, 1983.

    PubMed  CAS  Google Scholar 

  16. Hall A, Marshall CJ, Spurr NK, Weiss RA: Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303:396–400, 1983.

    PubMed  CAS  Google Scholar 

  17. Taparowsky E, Shimizu K, Goldfarb M, Wigler M: Structure and activation of the human N-ras gene. Cell 34:581–586, 1983.

    PubMed  CAS  Google Scholar 

  18. Capon DJ, Chen EY, Levinson AD, Seeburg PH, Goeddel DV: Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302:33–37, 1983.

    PubMed  CAS  Google Scholar 

  19. Langbeheim H, Shih TY, Scolnick EM: Identification of a normal vertebrate cell protein related to the p21 src of Harvey murine sarcoma virus. Virology 106:292–300, 1980.

    PubMed  CAS  Google Scholar 

  20. Furth ME, Davis LJ, Fleurdelys B, Scolnick EM: Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family. J Virol 43:294–304, 1982.

    PubMed  CAS  Google Scholar 

  21. Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD, Goeddel DV: Activation of Ki-ras 2 gene in human colon and lung carcinomas by two different point mutations. Nature 304:507–513, 1983.

    PubMed  CAS  Google Scholar 

  22. Shimizu K, Birnbaum D, Ruley EA, Fasano O, Suard Y, Edlund L, Taparowsky E, Goldfarb M, Wigler M: Structure of the Ki-ras gene of the human lung carcinoma cell line Calu-1. Nature 304:497–500, 1983.

    PubMed  CAS  Google Scholar 

  23. McCoy MS, Bargmann CI, and Weinberg RA: Human colon carcinoma Ki-ras2 oncogene and its corresponding proto-oncogene. Mol Cell Biol 4:1577–1582, 1984.

    PubMed  CAS  Google Scholar 

  24. McBridge OW, Swan DC, Tronick SR, Gol R, Klimanis D, Moore DE, Aaronson SA: Regional chromosomal localization of N-ras, K-ras and myb oncogenes in human cells. Nucleic Acids Res 11:8221–8236, 1983.

    Google Scholar 

  25. O’Brien SJ, Nash WG, Goodwin JL, Lowy DR, Chang EH: Dispersion of the ras family of transforming genes of four different chromosomes in man. Nature 302:839–842, 1983.

    PubMed  Google Scholar 

  26. Jhanwar SC, Neel BG, Hayward WS, Ghaganti RSK: Localization of c-ras oncogene family on human germ-line chromosomes. Proc Natl Acad Sci USA 80:4794–4797, 1983.

    PubMed  CAS  Google Scholar 

  27. Popescu NC, Amsbaugh SC, DiPaolo JA, Tronick SR, Aaronson SA, Swan DC: Chromosomal localization of three human ras genes by in situ molecular hybridization. Somatic Cell Mol Genet 11:149–155, 1985.

    CAS  Google Scholar 

  28. Ryan J, Barker PE, Shimizu K, Wigler M, Ruddle FH: Chromosomal assignment of a family of human oncogenes. Proc Natl Acad Sci USA 80:4460–4463, 1983.

    PubMed  CAS  Google Scholar 

  29. Sakaguchi AY, Zabel BU, Grzeschik K-H, Law ML, Ellis RW, Scolnick EM, Naylor SL: Regional localization of two human cellular Kirsten ras genes on chromosomes 6 and 12. Mol Cell Biol 4:989–993, 1984.

    PubMed  CAS  Google Scholar 

  30. Huerre C, Despoisse S, Gilgenkrantz S, Lenoir GM, Junien C: c-Ha-rasl is not detected in aniridia-Wilms’ tumour association. Nature 305:638–641, 1983.

    PubMed  CAS  Google Scholar 

  31. Van Kessel AG, Nusse R, Slater R, Tetteroo P, Hagemeyer A: Localization of the onco-gene c-Ha-ras 1 outside the Aniridia—Wilm’s tumor-associated deletion of chromosome 11 (del 11pl3) using somatic cell hybrids. Cancer Cytogenet 15:79–84, 1985.

    Google Scholar 

  32. Krontiris TG, DiMartino NA, Colb M, Parkinson DR: Unique allelic restriction fragments of the Ha-ras locus in leukocyte and tumour DNAs of cancer patients. Nature 313:369–374, 1985.

    PubMed  CAS  Google Scholar 

  33. Theillet C, Lidereau R, Escot C, Hutzell P, Brunet M, Gest J, Schlom J, Callahan R: Loss of a c-H-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 46: 4776–4781, 1986.

    PubMed  CAS  Google Scholar 

  34. Farr CJ, Saiki RK, Erlich HA, McCormick F, Marshall CJ: Analysis of ras gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc Natl Acad Sci USA 85:1629–1633, 1988.

    PubMed  CAS  Google Scholar 

  35. Gerhard DS, Dracopoli NC, Bale SJ, Houghton AN, Watkins P, Payne CE, Greene MH, Housman DE: Evidence against Ha-ras-1 involvement in sporadic and familial melanoma. Nature 325:73–75, 1987.

    PubMed  CAS  Google Scholar 

  36. Olson EN, Spizz G, Tainsky MA: The oncogenic forms of N-ras or H-ras prevent skeletal myoblast differentiation. Mol Cell Biol 7:2104–2111, 1987.

    PubMed  CAS  Google Scholar 

  37. Westaway D, Papkoff J, Moscovici C, Varmus HE: Identification of a provirally activated c-Ha-ras oncogene in an avian nephroblastoma via a novel procedure: cDNA cloning of a chimeric viral-host transcript. EMBO J 5:301–309, 1986.

    PubMed  CAS  Google Scholar 

  38. Nemoto N, Kodama K-I, Tazawa A, Masahito P, Ishikawa T: Extensive sequence homology of the goldfish ras gene to mammalian ras genes. Differentiation 32:17–23, 1986.

    PubMed  CAS  Google Scholar 

  39. Neuman-Silberberg FS, Sehejter E, Hoffmann FM, Shilo BZ: The Drosophila ras on cogenes: structure and nucleotide sequence. Cell 37:1027–1033, 1984.

    PubMed  CAS  Google Scholar 

  40. Mozer B, Marlor R, Parkhurst S, Corces V: Characterization and development expression of a Drosophila ras oncogene. Mol Cell Biol 5:885–889, 1985.

    PubMed  CAS  Google Scholar 

  41. Schejter ED, Shilo B: Characterization of functional domains of p21 ras by use of chimeric genes. EMBO J 4:407–412, 1985.

    PubMed  CAS  Google Scholar 

  42. Defeo-Jones D, Scolnick EM, Koller R, Dhar R: ras-related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature 306:707–709, 1983.

    PubMed  CAS  Google Scholar 

  43. Powers S, Kataoka T, Fasano O, Goldfarb M, Strathern J, Breach J, Wigler M: Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36:607–612, 1984.

    PubMed  CAS  Google Scholar 

  44. Fukui Y, Kaziro Y: Molecular cloning and sequence analysis of a ras gene from Schizosac-charomyces pombe. EMBO J 4:687–691, 1985.

    PubMed  CAS  Google Scholar 

  45. Reymond CD, Gomer RH, Mehdy MC, Firtel RA: Developmental regulation of a Dictyo-stelium gene encoding a protein homologous to a mammalian ras protein. Cell 39:141–149, 1984.

    PubMed  CAS  Google Scholar 

  46. Swanson ME, Eiste AM, Greenberg SM, Schwartz JH, Aldrich TH, Furth ME: Abundant expression of ras proteins in Aplysia neurons. J Cell Biol 103:485–492, 1986.

    PubMed  CAS  Google Scholar 

  47. Gallwitz D, Donath C, Sander C: A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature 306:704–707, 1983.

    PubMed  CAS  Google Scholar 

  48. Touchot N, Chardin P, Tavitian A: Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: Molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci USA 84:8210–8214, 1987.

    PubMed  CAS  Google Scholar 

  49. Zahraoui A, Touchot N, Chardin P, Tavitian A: Complete coding sequences of the rab related rab 3 and 4 cDNAs. Nucleic Acids Res 16:1204, 1988.

    PubMed  CAS  Google Scholar 

  50. Haubruck H, Disela C, Wagner P, Gallwitz D: The ras-related ypt protein is an ubiquitous eukaryotic protein: Isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene. EMBO J 6:4049–4053, 1987.

    PubMed  CAS  Google Scholar 

  51. Salminen A, Novick PJ: A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49:527–538, 1987.

    PubMed  CAS  Google Scholar 

  52. Madaule P, Axel R: A novel ras-related gene family. Cell 41:31–40, 1985.

    PubMed  CAS  Google Scholar 

  53. Madaule P, Axel R, Myers AM: Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci 84:779–783, 1987.

    PubMed  CAS  Google Scholar 

  54. Chardin P, Madaule P, Tavitian A: Coding sequence of human rho cDNAs clone 6 and clone 9. Nucleic Acids Res 16:2717, 1988.

    PubMed  CAS  Google Scholar 

  55. Yeramian P, Chardin P, Madaule P, Tavitian A: Nucleotide sequence of human rho cDNA clone 12. Nucleic Acid Res 15:1869, 1987.

    PubMed  CAS  Google Scholar 

  56. Chardin P, Tavitian A: The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J 5:2203–2208, 1986.

    PubMed  CAS  Google Scholar 

  57. Lowe DG, Capon DJ, Delwart E, Sakaguchi AY, Naylor SL, Goeddel DV: Structure of the human and murine R-ras genes, novel genes closely related to ras proto-oncogenes. Cell 48:137–146, 1987.

    PubMed  CAS  Google Scholar 

  58. Pizon V, Chardin P, Lerosey I, Olfsson B, Tavitian A: Human cDNAs rapl and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the ‘effector’ region. Oncogene 3:201–204, 1988.

    PubMed  CAS  Google Scholar 

  59. Pizon V, Lerosey I, Chardin P, Tavitian A: Nucleotide sequence of a human cDNA encoding a ras-related protein (raplB). Nucleic Acids Res 16:7719, 1988.

    PubMed  CAS  Google Scholar 

  60. Noda M, Kitayama H, Matsuzaki, Sugimoto Y, Okayama H, Bassin RH, Ikawa Y: Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proc Natl Acad Sci USA, 86:162–166, 1989.

    PubMed  CAS  Google Scholar 

  61. Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M: A ras-related gene with transformation suppressor activity. Cell, 56:77–84, 1989.

    PubMed  CAS  Google Scholar 

  62. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Change EH: Mechanism of activation of a human oncogene. Nature 300: 143–149, 1982.

    PubMed  CAS  Google Scholar 

  63. Reddy EP, Reynolds RK, Santos E, Barbacid M: A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152, 1982.

    PubMed  CAS  Google Scholar 

  64. Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M: Activation of T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300:762–765, 1982.

    PubMed  CAS  Google Scholar 

  65. Yuasa Y, Srivastava SK, Dunn CY, Rhim JS, Reddy EP, Aaronson SA: Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature 303:775–779, 1983.

    PubMed  CAS  Google Scholar 

  66. Bos JL, Toksoz D, Marshall CJ, Verlaan-deVries M, Veeneman GH, van der Eb AJ, van Boom J, Janssen JWG, Steenvoorden ACM: Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature 315:726–730, 1985.

    PubMed  CAS  Google Scholar 

  67. Fasano O, Aldrich T, Tamanoi F, Taparowsky E, Furth M, Wigler M: Analysis of the transforming potential of the human H-ras gene by random mutagenesis. Proc Natl Acad Sci USA 71:4008–4012, 1984.

    Google Scholar 

  68. Walter M, Clark SG, Levinson AD: The oncogenic activation of human p21ras by a novel mechanism. Science 233:649–652, 1986.

    PubMed  CAS  Google Scholar 

  69. Sigal IS, Gibbs JB, D’Alonzo JS, Temeles GL, Wolanski BS, Socher SH, Scolnick EM: Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc Natl Acad Sci USA 83:952–956, 1986.

    PubMed  CAS  Google Scholar 

  70. Der CJ, Weissman B, MacDonald MJ: Altered guanine nucleotide binding and H-ras transforming and differentiating activities. Oncogene 3:105–112, 1988.

    CAS  Google Scholar 

  71. Seeburg PH, Colby WW, Hayflick JS, Capon DJ, Goeddel DV, Levinson AD: Biological properties of human c-Ha-rasl genes mutated at codon 12. Nature 312:71–75, 1984.

    PubMed  CAS  Google Scholar 

  72. Chipperfield RG, Jones SS, Lo K-M, Weinberg RA: Activation of Ha-ras p21 by sub-stitution, deletion and insertion mutations. Mol Cell Biol 5:1809–1813, 1985.

    PubMed  CAS  Google Scholar 

  73. Der CJ, Finkel T, Cooper GM: Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44:167–176, 1986.

    PubMed  CAS  Google Scholar 

  74. Chang EH, Furth ME, Scolnick EM, Lowy DR: Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature 297:479–483, 1982.

    PubMed  CAS  Google Scholar 

  75. McCoy MS, Toole JJ, Cunningham JM, Chang EH, Lowy DR, Weinberg RA: Char-acterization of a human colon/lung carcinoma oncogene. Nature 302:79–81, 1983.

    PubMed  CAS  Google Scholar 

  76. Stacey DW, Kung H-F: Transformation of NIH/3T3 cells by microinjection of Ha-ras p21 protein. Nature 310:508–511, 1984.

    PubMed  CAS  Google Scholar 

  77. Winter E, Perucho M: Oncogene amplification during tumorigenesis of established rat fibroblasts reversibly transformed by activated human ras oncogenes. Mol Cell Biol 6: 2562–2570, 1986.

    PubMed  CAS  Google Scholar 

  78. Spandidos DA, Wilkie NM: Malignant transformation of early passage rodent cells by a single mutated human encogene. Nature 310:469–475, 1984.

    PubMed  CAS  Google Scholar 

  79. Cohen JB, Levinson AD: A point mutation in the last intron responsible for increased expression and transforming activity of the c-Ha-ras oncogene. Nature 334:119–124, 1988.

    PubMed  CAS  Google Scholar 

  80. Ricketts MH, Levinson AD: High-level expression of c-H-ras1 fails to fully transform Rat-1 cells. Mol Cell Biol 8:1460–1468, 1988.

    PubMed  CAS  Google Scholar 

  81. Gilman AG: G proteins and dual control of adenylate cyclase. Cell 36:577–579, 1984.

    PubMed  CAS  Google Scholar 

  82. Hurley JB, Simon MI, Teplow DB, Robishaw JD, Gilman AG: Homologies between signal transducing G proteins and ras gene products. Science 226:860–862, 1984.

    PubMed  CAS  Google Scholar 

  83. Lochrie MA, Hurley JB, Simon MI: Sequence of the alpha subunit of photoreceptor G protein: homologies between transducin, ras, and elongation factors. Science 228:96–99, 1984.

    Google Scholar 

  84. Gilman AG: G proteins: Transducers of receptor-generated signals. Annu Rev Biochem 56:615–649, 1987.

    PubMed  CAS  Google Scholar 

  85. Masters SB, Stround RM, Bourne HR: Family of G protein alpha chains: amphipathic analysis and predicted structure of functional domains. Pro Eng 1:47–54, 1986.

    CAS  Google Scholar 

  86. Halliday K: Regional homology in GTP-binding proto-oncogene products and elongation factors. J Cyclic Nucl Res 9:431–448.

    Google Scholar 

  87. Leberman R, Egner U: Homologies in the primary structure of GTP-binding proteins: the nucleotide-binding site of EF-Tu and p21. EMBO J 3:339–341, 1984.

    PubMed  CAS  Google Scholar 

  88. Dever TE, Glynias MJ, Merrick WC: GTP-binding domain: Three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 84:1814–1818, 1987.

    PubMed  CAS  Google Scholar 

  89. Finkel T, Der CJ, Cooper GM: Activation of ras genes in human tumors does not affect subcellular localization, post-translational modification or guanine nucleotide binding properties of p21. Cell 37:151–158, 1984.

    PubMed  CAS  Google Scholar 

  90. McGrath JP, Capon DJ, Goeddel DV, Levinson AD: Comparative biochemical properties of normal and activated human ras p21 protein. Nature 310:644–649, 1984.

    PubMed  CAS  Google Scholar 

  91. Sweet RW, Yokoyama S, Kamata T, Feramisco JR, Rosenberg M, Gross M: The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity. Nature 311:273–275, 1984.

    PubMed  CAS  Google Scholar 

  92. Gibbs JB, Ellis RW, Scolnick EM: Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci USA 81:5704–5708, 1984.

    PubMed  CAS  Google Scholar 

  93. Manne V, Yamazaki S, Kung H: Guanosine nucleotide binding by highly purified Ha-ras-encoded p21 protein produced in Escherichia coli. Proc Natl Acad Sci USA 81:6953–6957, 1984.

    PubMed  CAS  Google Scholar 

  94. Temeles GL, Gibbs JB, D’Alonzo JS, Sigal IS, Scolnick EM: Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313:700–703, 1985.

    PubMed  CAS  Google Scholar 

  95. Trahey M, Milley RJ, Cole GE, Innis M, Paterson H, Marshall CJ, Hall A, McCormick F: Biochemical and biological properties of the human N-ras p21 protein. Mol Cell Biol 7: 541–544, 1987.

    PubMed  CAS  Google Scholar 

  96. Lacal JC, Srivastava SK, Anderson PS, Aaronson SA: ras p21 proteins with high or low GTPase activity can efficiently transform NIH/3T3 cells. Cell 44:609–617, 1986.

    PubMed  CAS  Google Scholar 

  97. Trahey M, McCormick F: A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545, 1987.

    PubMed  CAS  Google Scholar 

  98. Vogel US, Dixon RAF, Schaber MD, Diehl RE, Marshall MS, Scolnick EM, Sigal IS, Gibbs JB: Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335:90–93, 1988.

    PubMed  CAS  Google Scholar 

  99. Calés C, Hancock JF, Marshall CJ, Hall A: The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature 332:548–551, 1988.

    PubMed  Google Scholar 

  100. Gibbs JB, Schaber MD, Allard WJ, Sigal IS, Scolnick EM: Purification of ras GTPase activating protein from bovine brain. Proc Natl Acad Sci USA 85:5026–5030, 1988.

    PubMed  CAS  Google Scholar 

  101. Hoshino M, Kawakita M, Hattori S: Characterization of a factor that stimulates hydrolysis of GTP bound to ras gene product p21 (GTPase-activating protein) and correlation of its activity to cell density. Mol Cell Biol 8:4169–4173, 1988.

    PubMed  CAS  Google Scholar 

  102. Lacal PM, Pennington CY, Lacal JC: Transforming activity of ras proteins translocated to the plasma membrane by a myristoylation sequence from the src gene product. Oncogene 2:533–538, 1988.

    PubMed  CAS  Google Scholar 

  103. Adari H, Lowy DR, Willumsen BM, Der CJ, McCormick F: Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240:518–521, 1988.

    PubMed  CAS  Google Scholar 

  104. Der CJ, Pan B-T, Cooper GM: rasH mutants deficient in GTP binding. Mol Cell Biol 6:3291–3294, 1986.

    PubMed  CAS  Google Scholar 

  105. Clanton DJ, Lu Y, Blair DG, Shih TY: Structural significance of the GTP-binding domain of ras p21 studied by site-directed mutagenesis. Mol Cell Biol 7:3092–3097, 1987.

    PubMed  CAS  Google Scholar 

  106. Feig LA, Corbley M, Pan B-T, Roberts TM, Cooper GM: Structure/function analysis of ras using random mutagenesis coupled with functional screening assays. Mol Cell Endocrinol 1:127–136, 1987.

    CAS  Google Scholar 

  107. Feig LA, Cooper GM: Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins. Mol Cell Biol 8:2472–2478, 1988.

    PubMed  CAS  Google Scholar 

  108. McCormick F, Clark BF, laCour TFM, Kjeldgoard M, Norskov-Lauritsen L, Nyborg J: A model for the tertiary structure of p21, the product of the ras oncogene. Science 230:78–82, 1985.

    PubMed  CAS  Google Scholar 

  109. de Vos AM, Tong L, Milburn MV, Matias PM, Jancarik J, Noguchi S, Nishimura S, Miura K, Ohtsuka ES, Kim S-H: Three-dimensional structure of an oncogene protein: Catalytic domain of human c-H-ras p21. Science 239:888–893, 1988.

    PubMed  Google Scholar 

  110. Clark R, Wong G, Arnheim N, Nitecki D, McCormick F: Antibodies specific for amino acid 12 of the ras oncogene product inhibit GTP binding. Proc Natl Acad Sci USA 82:5280–5284, 1985.

    PubMed  CAS  Google Scholar 

  111. Feramisco JR, Clark R, Wong G, Arnheim N, Milley R, McCormick F: Transient reversion of ras oncogene-induced cell transformation by antibodies specific for amino acid 12 of ras protein. Nature 314:639–642, 1985.

    PubMed  CAS  Google Scholar 

  112. Hattori S, Ulsh LS, Halliday K, Shih TY: Biochemical properties of a highly purified v-rasH p21 protein overproduced in Escherichia coli and inhibition of its activities by a monoclonal antibody. Mol Cell Biol 5:1449–1455, 1985.

    PubMed  CAS  Google Scholar 

  113. Mulcahy LS, Smith MR, Stacey DW: Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature 313:241–243, 1985.

    PubMed  CAS  Google Scholar 

  114. Kung H-F, Smith MR, Bekesi E, Manne V, Stacey DW: Reversal of transformed phenotype by monoclonal antibodies against Ha-ras p21 proteins. Exp Cell Res 162:363–371, 1986.

    PubMed  CAS  Google Scholar 

  115. Lacal JC, Aaronson SA: Monoclonal antibody Y13–259 recognizes an epitope of the p21 ras molecule not directly involved in the GTP-binding activity of the protein. Mol Cell Biol 6:1002–1009, 1986.

    PubMed  CAS  Google Scholar 

  116. Willumsen BM, Papageorge AG, Kung H-F, Bekesi E, Robins T, Johnsen M, Vass WC, Lowy DR: Mutational analysis of a ras catalytic domain. Mol Cell Biol 6:2646–2654, 1986.

    PubMed  CAS  Google Scholar 

  117. Lacal JC, Aaronson SA: ras p21 deletion mutants and monoclonal antibodies as tools for localization of regions relevant to p21 function. Proc Natl Acad Sci USA 83:5400–5404, 1986.

    PubMed  CAS  Google Scholar 

  118. Goodrich GA, Burrell HR: Micromeasurement of nucleotide 5′-triphosphates using coupled bioluminescence. Anal Biochem 127:395–401, 1982.

    PubMed  CAS  Google Scholar 

  119. Proud CG: Guanine nucleotides, protein phosphorylation and the control of translation. TIBS 11:73–77, 1986.

    CAS  Google Scholar 

  120. Reynolds SH, Stowers SJ, Patterson RM, Maronpot RR, Aaronson SA, Anderson MW: Activated oncogenes in B6C3F1 mouse liver tumors: Implications for risk assessment. Science 237:1309–1316, 1987.

    PubMed  CAS  Google Scholar 

  121. Willingham MC, Pastan I, Shih TY, Scolnick EM: Localization of the src gene product of the Harvey strain of MSV to the plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell 19:1005–1014, 1980.

    PubMed  CAS  Google Scholar 

  122. Shih TY, Weeks MO, Gruss P, Dhar R, Oroszlan S, Scolnick EM: Identification of a precursor in the biosynthesis of the p21 transforming protein of Harvey murine sarcoma virus. J Virol 42:253–261, 1982.

    PubMed  CAS  Google Scholar 

  123. Sefton BM, Trowbridge IS, Cooper JA, Scolnick EM: The transforming proteins of Rous sarcoma virus, Harvey sarcoma virus and Abelson virus contain tightly bound lipid. Cell 31:465–474, 1982.

    PubMed  CAS  Google Scholar 

  124. Willumsen BM, Christensen A, Hubbert NL, Papageorge AG, Lowry DR: The p21 ras C-terminus is required for transformation and membrane association. Nature 310:583–586, 1984.

    PubMed  CAS  Google Scholar 

  125. Buss JE, Sefton BM: Direct identification of palmitic acid as the lipid attached to p21 ras. Mol Cell Biol 6:116–122, 1986.

    PubMed  CAS  Google Scholar 

  126. Chen Z-Q, Ulsh LS, DuBois G, Shih T: Post-translational processing of p21 ras proteins involves palmitylation of the C-terminal tetrapeptide containing cysteine-186. J Virol 56: 607–612, 1985.

    PubMed  CAS  Google Scholar 

  127. Tamanoi F, Hsueh EC, Goodman LE, Cobitz AR, Detrick RJ, Brown WR, Fujiyama A: Posttranslational modification of ras proteins: detection of a modification prior to fatty acid acylation and cloning of a gene responsible for the modification. J Cell Biochem 36: 261–273, 1988.

    PubMed  CAS  Google Scholar 

  128. Magee AI, Gutierrez L, McKay IA, Marshall CJ, Hall A: Dynamic fatty acylation of p21N-ras. EMBO J 6:3353–3357, 1987.

    PubMed  CAS  Google Scholar 

  129. Backlund PS, Aksamit RR: Guanine nucleotide-dependent carboxyl methylation of mam-malian membrane proteins. J Biol Chem 263:15864–15867, 1988.

    PubMed  CAS  Google Scholar 

  130. Willumsen BM, Norris K, Papageorge AG, Hubbert NL, Lowy DR: Harvey murine sarcoma virus p21 ras protein: Biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J 3:2581–2585, 1984.

    PubMed  CAS  Google Scholar 

  131. Sefton BM, Buss JE: The covalent modification of eukaryotic proteins with lipid. J Cell Biol, 1987.

    Google Scholar 

  132. Buss JE, Solski PA, Schaeffer JP, MacDonald MJ, Der CJ: Activation of the cellular proto-oncogene product p21c-ras by addition of a myristylation signal. Science 243:1600–1603, 1989

    PubMed  CAS  Google Scholar 

  133. Signal IS, Gibbs JB, D’Alonzo JS, Scolnick EM: (1986). Identification of effector residues and a neutralizing epitope of Ha-ras-encoded p21. Proc Natl Acad Sci USA 83:4725–4729.

    Google Scholar 

  134. Stone JC, Vass, WC, Willumsen BM, Lowy DR: p21-ras effector domain mutants con-structed by “cassette” mutagenesis. Mol Cell Biol 8:3565–3569, 1988.

    PubMed  CAS  Google Scholar 

  135. Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K, McCormick F: Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700, 1988.

    PubMed  CAS  Google Scholar 

  136. Furth ME, Aldrich TH, Cordon-Cardo C: Expression of ras proto-oncogene proteins in normal human tissues. Oncogene 1:47–58, 1987.

    PubMed  CAS  Google Scholar 

  137. Papageorge AG, Defeo-Jones D, Robinson P, Temeles G, Scolnick EM: Saccharomyces cerevisiae synthesizes proteins related to the p21 gene product of ras genes found in mammals. Mol Cell Biol 4:23–29, 1984.

    PubMed  CAS  Google Scholar 

  138. Pawson T, Amiel T, Hinze E, Auersperg N, Neave N, Sobolewski A, Weeks G: Regulation of a ras-related protein during development of Dictyostelium discoideum. Mol Cell Biol 5:33–39, 1985.

    PubMed  CAS  Google Scholar 

  139. Hattori S, Clanton DJ, Satoh T, Nakamura S, Kaziro Y, Kawakita M, Shih TY: Neu-tralizing monoclonal antibody against ras oncogene product p21 which impairs guanine nucleotide exchange. Mol Cell Biol 7:1999–2002, 1987.

    PubMed  CAS  Google Scholar 

  140. Rasheed S, Norman GL, Heidecker G: Nucleotide sequence of the Rasheed rat sarcoma virus oncogene: New mutations. Science 221:155–157, 1983.

    PubMed  CAS  Google Scholar 

  141. Lautenberger JA, Ulsh L, Shih TY, Papas TS: High-level expression in Escherichia coli of enzymatically active Harvey murine sarcoma virus p21ras protein. Science 221:858–860, 1983.

    PubMed  CAS  Google Scholar 

  142. Lacal JC, Santos E, Notario V, Barbacid M, Yamazaki S, KungH, Seamans C, McAndrewS, Crowl R: Expression of normal and transforming H-ras genes in Escherichia coli and purification of their encoded p21 proteins. Proc Natl Acad Sci USA 81:5305–5309, 1984.

    PubMed  CAS  Google Scholar 

  143. Nakano ET, Rao MM, Perucho M, Inouye M: Expression of the Kirsten ras viral and human proteins in Escherichia coli. J Virol 61:302–307, 1987.

    PubMed  CAS  Google Scholar 

  144. Buss JE, Der CJ, Solski PA: The six amino-terminal amino acids of p60src are sufficient to cause myristylation of p21v-ras. Mol Cell Biol 8:3960–3963, 1988.

    PubMed  CAS  Google Scholar 

  145. Jurnak F: Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 230:32–36, 1985.

    PubMed  CAS  Google Scholar 

  146. Jurnak F: The three-dimensional structure of c-H-ras p21: Implications for oncogene and G protein studies. TIBS 13:195–198, 1988.

    PubMed  CAS  Google Scholar 

  147. Gibbs JB, Schaber MD, Marshall MS, Scolnick EM, Sigal IS: Identification of guanine nucleotides bound to ras-encoded proteins in growing yeast cells. J Biol Chem 262: 10426–10429, 1987.

    PubMed  CAS  Google Scholar 

  148. Satoh T, Nakamura S, Nakafuku M, Kaziro Y: Studies on ras proteins. Catalytic properties of normal and activated ras proteins purified in the absence of protein denaturants. Biochim Biophys Acta 25(949):97–109, 1988.

    Google Scholar 

  149. Field J, Broek D, Kataoka T, Wigler M: Guanine nucleotide activation of, and competition between, ras proteins from Saccharomyces cerevisiae. Mol Cell Biol 7:2128–2133, 1987.

    PubMed  CAS  Google Scholar 

  150. Satoh T, Nakamura S, Kaziro Y: Induction of neurite formation in PC12 cells by mic-roinjection of proto-oncogenic Ha-ras protein incubated with guanosine-5 -0-(3-thiotri-phosphate). Mol Cell Biol 7:4553–4556, 1987.

    PubMed  CAS  Google Scholar 

  151. Segev N, Mulholland J, Botstein D: The yeast GTP-binding YPT1 protein and a mam-malian counterpart are associated with the secretion machinery. Cell 52:915–924, 1988.

    PubMed  CAS  Google Scholar 

  152. Bourne HR: Do GTPases direct membrane traffic in secretion? Cell 53:669–671, 1988.

    PubMed  CAS  Google Scholar 

  153. Goud B, Salminen A, Walworth NC, Novick PJ: A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53:753–768, 1988.

    PubMed  CAS  Google Scholar 

  154. Anderson PS, Lacal JC: Expression of the Aplysia californica rho gene in Escherichia coli: Purification and characterization of its encoded p21 product. Mol Cell Biol 7:3620–3628, 1987.

    PubMed  CAS  Google Scholar 

  155. Kikuchi A, Yamamoto K, Fujita T, Takai Y: ADP-ribosylation of the bovine brain rho protein by botulinum toxin type C1. J Biol Chem 263:16303–16308, 1988.

    PubMed  CAS  Google Scholar 

  156. Narumiya S, Sekine A, Fujiwara M: Substrate for botulinum ADP-ribosyltransferase, Gb, has an amino acid sequence homologous to a putative rho gene product. J Biol Chem 263:17255–17257, 1988.

    PubMed  CAS  Google Scholar 

  157. Knight DE, Tonge DA, Baker PF: Inhibition of exocytosis in bovine adrenal medullary cells by botulinum toxin type D. Nature 317:719–721, 1985.

    PubMed  CAS  Google Scholar 

  158. Bar-Sagi D, Feramisco JR: Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233:1061–1068, 1986.

    PubMed  CAS  Google Scholar 

  159. Burgoyne RD: G proteins. Control of exocytosis. Nature 328:112–113, 1987.

    PubMed  CAS  Google Scholar 

  160. Adam-Vizi V, Knight D: The ras protein is not associated with exocytosis. Nature 328: 581, 1987.

    PubMed  CAS  Google Scholar 

  161. Lowe DG, Goeddel DV: Heterologous expression and characterization of the human R-ras gene product. Mol Cell Biol 7:2845–2856, 1987.

    PubMed  CAS  Google Scholar 

  162. Lowe DG, Ricketts M, Levinson AD, Goeddel DV: Chimeric proteins define variable and essential regions of Ha-ras-encoded protein. Proc Natl Acad Sci USA 85:1015–1019, 1988.

    PubMed  CAS  Google Scholar 

  163. Cooper GM: Cellular transforming genes. Science 217:801–806, 1982.

    PubMed  CAS  Google Scholar 

  164. Taparowsky EJ, Heaney ML, Parsons JT: Oncogene-mediated multistep transformation of C3H10T1/2 cells. Cancer Res 47:4125–4129, 1987.

    PubMed  CAS  Google Scholar 

  165. Land H, Parada LF, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–606, 1983.

    PubMed  CAS  Google Scholar 

  166. Yancopoulos GD, Nisen PD, Tesfaye A, Kohl NE, Goldfarb MP, Alt FW: N-myc co-operates with ras to transform normal cells in culture. Proc Natl Acad Sci USA 82: 5455–5459, 1985.

    PubMed  CAS  Google Scholar 

  167. Land H, Chen AC, Morgenstern JP, Parada LF, Weinberg RA: Behavior of myc and ras oncogenes in transformation of rat embryo fibroblasts. Mol Cell Biol 6:1917–1925, 1986.

    PubMed  CAS  Google Scholar 

  168. Ruley HE: Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304:602–606, 1983.

    PubMed  CAS  Google Scholar 

  169. Schwartz RC, Stanton LW, Riley SC, Marcu KB, Witte ON: Synergism of v-myc and v-Ha-ras in the in vitro neoplastic progression of murine lymphoid cells. Mol Cell Biol 6:3221–3231, 1986.

    PubMed  CAS  Google Scholar 

  170. Fusco A, Berlingieri MT, Di Fiore PP, Portella G, Grieco M, Vecchio G: One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol 7:3365–3370, 1987.

    PubMed  CAS  Google Scholar 

  171. Weissman BE, Aaronson SA: BALB and Kirsten murine sarcoma viruses alter growth and differentiation of EGF-dependent BALB/c mouse epidermal keratinocyte lines. Cell 32: 599–606, 1983.

    PubMed  CAS  Google Scholar 

  172. Weissman BE, Aaronson SA: Members of the src and ras oncogene families supplant the epidermal growth factor requirement of BALB/MK-2 keratinocytes and induce distinct alterations in their terminal differentiation program. Mol Cell Biol 5:3386–3396, 1985.

    PubMed  CAS  Google Scholar 

  173. Jenkins JR, Rudge K, Currie GA: Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312:651–654, 1984.

    PubMed  CAS  Google Scholar 

  174. Ridley AJ, Paterson HF, Noble M, Land H: ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J 7:1635–1645, 1988.

    PubMed  CAS  Google Scholar 

  175. Schwab M, Varmus HE, Bishop JM: Human N-myc gene contributes to neoplastic transformation of mammalian cells in culture. Nature 316:160–162, 1985.

    PubMed  CAS  Google Scholar 

  176. Eliyahu D, Raz A, Gruss P, Givol D, Oren M: Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312:646–649, 1984.

    PubMed  CAS  Google Scholar 

  177. Parada LF, Land H, Weinberg RA, Wolf D, Rotter V: Cooperation between genes en-coding p53 tumour antigen and ras in cellular transformation. Nature 312:649–651, 1984.

    PubMed  CAS  Google Scholar 

  178. Namba M, Nishitani K, Fukushima F, Kimoto T, Nose K: Multistep process of neoplastic transformation of normal human fibroblasts by 60Co gamma rays and Harvey sarcoma viruses. Int J Cancer 37:419–423, 1986.

    PubMed  CAS  Google Scholar 

  179. Sager R, Tanaka K, Lau CC, Ebina Y, Anisowicz A: Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc Natl Acad Sci USA 80:7601–7605, 1983.

    PubMed  CAS  Google Scholar 

  180. Yoakum GH, Lechner JF, Gabrielson EW, Korba BE, Malan-Shibley L, Willey JC, Valerio MG, Shamsuddin AM, Trump BF, Harris CC: Transformation of human bronchial epithelial cells transfected by Harvey ras oncogene. Science 227:1174–1179, 1985.

    PubMed  CAS  Google Scholar 

  181. Rhim JS, Jay G, Arnstein P, Price FM, Sanford KK, Aaronson SA: Neoplastic transformation of human epidermal keratinocytes by AD12-SV40 and Kirsten sarcoma virus. Science 227:1250–1252, 1985.

    PubMed  CAS  Google Scholar 

  182. Spandidos DA, Wilkie NM: Malignant transformation of early passage rodent cell’s by a single mutated human oncogene. Nature 310:469–475, 1984.

    PubMed  CAS  Google Scholar 

  183. Noda M, Ko M, Ogura A, Liu D-G, Amano T, Takano T, Ikawa Y: Sarcoma viruses carrying ras oncogenes induce differentiationrassociated properties in a neuronal cell line. Nature 318:73–75, 1985.

    PubMed  CAS  Google Scholar 

  184. Bell JC, Jardine K, McBurney MW: Lineage-specific transformation after differentiation of multi-potential murine stem cells containing a human oncogene. Mol Cell Biol 6:617–725, 1986.

    PubMed  CAS  Google Scholar 

  185. Schubert D, Heinemann S, Kodokoro Y: Cholinergic metabolism and synapse formation by a rat nerve cell line. Proc Natl Acad Sci USA 74:2579–2583, 1977.

    PubMed  CAS  Google Scholar 

  186. Greene LA, Tischler AS: Establishment of noradrenergic clonal line of rat adrenal pheo-chromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428, 1976.

    PubMed  CAS  Google Scholar 

  187. Hagag N, Halegoua S, Viola M: Inhibition of growth factor-induced differentiation of PC12 cells by microinjection of antibody to ras p21. Nature 319:680–682, 1986.

    PubMed  CAS  Google Scholar 

  188. Nakagawa T, Mabry M, De Bustros A, Ihle JN, Nelkin BD, Baylin SB: Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary thyroid carcinoma cells. Proc Natl Acad Sci USA 84:5923–5927, 1987.

    PubMed  CAS  Google Scholar 

  189. Craig RW, Sager R: Suppression of tumorigenicity in hybrids of normal and oncogene-transformed CHEF cells. Proc Natl Acad Sci USA 82:2062–2066, 1985.

    PubMed  CAS  Google Scholar 

  190. Geiser AG, Der CJ, Marshall CJ, Stanbridge EJ: Suppression of tumorigenicity with continued expression of the c-Ha-ras oncogene in EJ bladder carcinoma-human fibroblast hybrid cells. Proc Natl Acad Sci USA 83:5209–5213, 1986.

    PubMed  CAS  Google Scholar 

  191. Benedict WF, Weissman BE, Mark C, Stanbridge EJ: Tumorigenicity of human HT1080 fibrosarcoma X normal fibroblast hybrids: Chromosome dosage dependency. Cancer Res 44:3471–3479, 1984.

    PubMed  CAS  Google Scholar 

  192. Schaefer R, Iyer J, Iten E, Nirkko AC: Partial reversion of the transformed phenotype in Hras-transfected tumorigenic cells by transfer of a human gene. Proc Natl Acad Sci USA 85:1590–1594, 1988.

    PubMed  CAS  Google Scholar 

  193. Noda M, Selinger Z, Scolnick EM, Bassin RH: Flat revenants isolated from Kirsten sarcoma virus-transformed cells are resistant to the action of specific oncogenes. Proc Natl Acad Sci USA 80:5602–5606, 1983.

    PubMed  CAS  Google Scholar 

  194. Wakelam MJO, Davies SA, Houslay MD, McKay I, Marshall CJ, Hall A: Normal p21N-ras couples bombesin and other growth factor receptors to inositol phosphate production. Nature 323:173–176, 1986.

    PubMed  CAS  Google Scholar 

  195. Marshall CJ: Oncogenes and growth control. Cell 49:723–725, 1987.

    Google Scholar 

  196. Korn LJ, Siebel CW, McCormick F, Roth RA: ras p21 as a potential mediator of insulin action in Xenopus oocytes. Science 236:840–843, 1987.

    PubMed  CAS  Google Scholar 

  197. Kamata T, Feramisco JR: Epidermal growth factor stimulates guanine nucleotide binding acitivity and phosphorylation of ras oncogene proteins. Nature 310:147–150, 1987.

    Google Scholar 

  198. Jeng AY, Srivastava SK, Lacal JC, Blumberg PM: Phosphorylation of ras oncogene product by protein kinase C. Biochem Biophys Res Commun 145:782–788, 1987.

    PubMed  CAS  Google Scholar 

  199. Spina A, Di Donato A, Colella G, Illiano G, Berlingieri MT, Fusco A, Grieco M: Increased adenylate cyclase activity in rat thyroid epithelial cells expressing viral ras genes. Biochem Biophys Res Commun 142:527–535, 1987.

    PubMed  CAS  Google Scholar 

  200. Franks DJ, Whitfield JF, Durkin JP: A viral K-ras protein increases the stimulability of adenylate cyclase by cholera toxin in NRK cells. Biochem Biophys Res Commun 147: 596–601, 1987.

    PubMed  CAS  Google Scholar 

  201. Salterelli Biochem Biophys Res Commun 127:318–325, 1985.

    Google Scholar 

  202. Chiarugi V, Porciatti F, Pasquali F, Bruni P: Transformation of BALB/3T3 cells with EJ/T24/H-ras oncogene inhibits adenylate cyclase response to beta-adrenergic agonist while increases muscarinic receptor dependent hydrolysis of inositol lipids. Biochem Biophys Res Commun 132:900–907, 1985.

    PubMed  CAS  Google Scholar 

  203. Levitzki A, Rudick J, Pastan I, Vass WC, Lowy DR: Adenylate cyclase activity of NIH/3T3 cells morphologically transformed by ras genes. FEBS Lett 197:134–138, 1986.

    PubMed  CAS  Google Scholar 

  204. Birchemeier C, Broek D, Wigler M: ras proteins can induce meiosis in Xenopus oocytes. Cell 43:615–621, 1985.

    Google Scholar 

  205. Beckner SK, Hatton S, Shih TY: The ras oncogene product is not a regulatory component of adenylate cyclase. Nature 317:71–72, 1985.

    PubMed  CAS  Google Scholar 

  206. Tarpley WG, Hopkins NK, Gorman RR: Reduced hormone-stimulated adenylate cyclase activity in NIH-3T3 cells expressing the EJ human bladder ras oncogene. Proc Natl Acad Sci USA 83:3703–3707, 1986.

    PubMed  CAS  Google Scholar 

  207. Fukui Y, Kozasa T, Kaziro Y, Takeda T, Yamamoto M: Role of a ras homolog in the life cycle of Schizosaccaromyces pombe. Cell 44:329–336, 1986.

    PubMed  CAS  Google Scholar 

  208. Mitchell B: Oncogenes and inositol lipids. Nature 308:770–770, 1984.

    Google Scholar 

  209. Berridge MJ, Irvine RF: Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321, 1984.

    PubMed  CAS  Google Scholar 

  210. Nishizuka Y: Studies and perspectives of protein kinase C. Science 233:305–312, 1986.

    PubMed  CAS  Google Scholar 

  211. Fleishman LF, Chahwala SB, Cantley L: ras-transformed cells: Altered levels of phospha-tidylinositol-4,5-bisphosphate and catabolites. Science 231:407–410, 1986.

    Google Scholar 

  212. Parries G, Hoebel R, Racker E: Opposing effects of a ras oncogene on growth factor-stimulated phosphoinositide hydrolysis: Desensitization to platelet-derived growth factor and enhanced sensitivity to bradykinin. Proc Natl Acad Sci 84:2648–2652, 1987.

    PubMed  CAS  Google Scholar 

  213. Benjamin CW, Connor JA, Tarpley WG, Gorman RR: NIH-3T3 cells transformed by the EJ-ras oncogene exhibit reduced platelet-derived growth factor-mediated Ca2+ mobiliza-tion. Proc Natl Acad Sci USA 85:4345–4349, 1988.

    PubMed  CAS  Google Scholar 

  214. Preiss J, Loomis CR, Bishop WR, Stein R, Niedel JE, Bell RM: Quantitative measurement of sn-l,2-diacylglycerols present in platelets, hepatocytes and ras- and s/s-transformed normal rat kidney cells. J Biol Chem 261:8597–8600, 1986.

    PubMed  CAS  Google Scholar 

  215. Fukami K, Matsuoka K, Nakanishi O, Yamakawa A, Kawai S, Takenawa T: Antibody to phosphatidylinositol 4,5-bisphosphate inhibits oncogene-induced mitogenesis. Proc Natl Acad Sci USA 85:9057–9061, 1988.

    PubMed  CAS  Google Scholar 

  216. Wolfman A, Macara IG: Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in ras-transformed fibroblasts. Nature 325:359–361, 1987.

    PubMed  CAS  Google Scholar 

  217. Lacal JC, Moscat J, Aaronson SA: Novel source of 1,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Nature 330:269–272, 1987.

    PubMed  CAS  Google Scholar 

  218. Seuwen K, Lagarde A, Pouyssegur J: Deregulation of hamster fibroblast proliferation by mutated ras oncogenes is not mediated by constitutive activation of phosphoinositide-specific phospholipase C. EMBO J 7:161–168, 1988.

    PubMed  CAS  Google Scholar 

  219. Yu C-L, Tsai M-H, Stacey DW: Cellular ras activity and phospholipid metabolism. Cell 52:63–71, 1988.

    PubMed  CAS  Google Scholar 

  220. Lacal JC, de la Pena P, Moscat J, Garcia-Barreno P, Anderson PS, Aaronson SA: Rapid stimulation of diacylglycerol production in Xenopus oocytes by microinjection of H-ras p21. Science 238:533–536, 1987.

    PubMed  CAS  Google Scholar 

  221. Ballester R, Furth ME, Rosen OM: Phorbol ester- and protein kinase C-mediated phos-phorylation of the cellular Kirsten ras gene product. J Biol Chem 262:2688–2695, 1987.

    PubMed  CAS  Google Scholar 

  222. Lacal JC, Fleming TP, Warren HS, Blumberg PM, Aaronson SA: Involvement of func-tional protein kinase C in the mitogenic response to the H-ras oncogene product. Mol Cell Biol 7:4146–4149, 1987.

    PubMed  CAS  Google Scholar 

  223. Smith MR, DeGudicibus SJ, Stacey DW: Requirement for c-ras proteins during viral oncogene transformation. Nature 320:540–543, 1986.

    PubMed  CAS  Google Scholar 

  224. Feig LA, Cooper GM: Inhibition of NIH 3T3 cells proliferation by a mutant ras protein with preferential affinity for GDP. Mol Cell Biol 8:3235–3243, 1988.

    PubMed  CAS  Google Scholar 

  225. Stacey DW, Watson T, Kung H-F, Curran T: Microinjection of transforming ras protein induces c-fos expression. Mol Cell Biol 7:523–527, 1987.

    PubMed  CAS  Google Scholar 

  226. Harvey JJ: An unidentified virus which causes the rapid production of tumors in mice. Nature 204:1104–1105, 1964.

    PubMed  CAS  Google Scholar 

  227. Kirsten WH, Mayer LA: Morphologic responses to a murine erythroblastosis virus. J Natl Cancer Inst 39:311–334, 1967.

    PubMed  CAS  Google Scholar 

  228. Rasheed S, Gardner MB, Huebner RJ: In vitro isolation of stable rat sarcoma viruses. Proc Natl Acad Sci USA 75:2972–2976, 1978.

    PubMed  CAS  Google Scholar 

  229. Peters RL, Rabstein LS, Van Vleck R, Kelloff GJ, Huebner RJ: Naturally occurring sarcoma virus of the BALB/cCr mouse. J Natl Cancer Inst 53:1725–1729, 1984.

    Google Scholar 

  230. Franz T, Lohler J, Fusco A, Pragneil I, Nobis P, Padua R, and Ostertag W: Transformation of mononuclear phagocytes in vivo and malignant histiocytosis caused by a novel murine spleen focus-forming virus. Nature 315:149–151, 1985.

    PubMed  CAS  Google Scholar 

  231. Frederickson TN, O’Neill RR, Rutledge TS, Theodore TS, Martin MA, Ruscetti SK, Austin JB, Hartley JW: Biologic and molecular characterization of two newly isolated ras-containing murine leukemia viruses. J Virol 61:2109–2119, 1987.

    Google Scholar 

  232. Weinberg RA: The action of oncogenes in the cytoplasm and nucleus. Science 230:770–776, 1985.

    PubMed  CAS  Google Scholar 

  233. Hill M, Hillova J: Virus recovery in chicken cells tested with Rous sarcoma cell DNA. Nature 237:35–39, 1972.

    CAS  Google Scholar 

  234. Shimizu K, Goldfarb M, Perucho M, Wigler M: Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci USA 80:383–387, 1983.

    PubMed  CAS  Google Scholar 

  235. Hall A, Marshall CJ, Spurr NK, Weiss RA: Identification of transforming gene in two human sarcania cell lines as a new member of the ras gene family located on chromosome 1, Nature 303: 396–400, 1983.

    PubMed  CAS  Google Scholar 

  236. Bos JL: The ras gene family and human carcinogenesis: Mutation Res 195:255–271, 1987.

    Google Scholar 

  237. Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb, AJ Vogelstein R: Prevalence of ras gene mutations in human colorectal cancers. Nature 327: 293–297, 1987.

    PubMed  CAS  Google Scholar 

  238. Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M: Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 327:298–303, 1987.

    PubMed  CAS  Google Scholar 

  239. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M: Most human carcinoma of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554, 1988.

    PubMed  CAS  Google Scholar 

  240. Sukumar S, Notario V, Martin-Zanca D, Barbacid M: Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature 306:658–662, 1983.

    PubMed  CAS  Google Scholar 

  241. Zarbl H, Sukumar S, Arthur AV, Martin-Zanca D, Barbacid M: Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315:382–385, 1985.

    PubMed  CAS  Google Scholar 

  242. Balmain A, Pragnell IB: Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303:72–74, 1983.

    PubMed  CAS  Google Scholar 

  243. Balmain A, Ramsden M, Bowden GT, Smith J: Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307:658–660, 1984.

    PubMed  CAS  Google Scholar 

  244. Gambke C, Signer E, Moroni C: Activation of N-ras gene in bone marrow cells from a patient with acute myeloblastic leukaemia. Nature 307:476–478, 1984.

    PubMed  CAS  Google Scholar 

  245. Bos JL, Toksoz D, Marshall CJ, Verlaan-de Vries M, Veeneman GH, van der Eb AJ, van Boom J, Janssen JWG, Steenvoorden ACM: Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature 315:726–730, 1985.

    PubMed  CAS  Google Scholar 

  246. Neri A, Knowles DM, Greco A, McCormick F, Dalla-Favera R: Analysis of ras oncogene mutations in human lymphoid malignancies. Proc Natl Acad Sci USA 85:9268–9272, 1988.

    PubMed  CAS  Google Scholar 

  247. Bos JL, Verlaan-de Vries M, van der Eb AJ, Janssen JWG, Delwel R, Lowenberg B, Colly LP: Mutations in N-ras predominate in acute myeloid leukemia. Blood 69:1237–1241, 1987.

    PubMed  CAS  Google Scholar 

  248. Rodenhuis S, Bos JL, Slater RM, Behrendt H, van’t Veer M, Smets LA: Absence of oncogene amplifications and occasional activation of N-ras in lymphoblastic leukemia of childhood. Blood 67:1698–1704, 1986.

    PubMed  CAS  Google Scholar 

  249. Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della-Porta G, Barbacid M: Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223:661–664, 1984.

    PubMed  CAS  Google Scholar 

  250. Feig LA, Bast RC Jr, Knapp RC, Cooper GM: Somatic activation of rasK gene in a human ovarian carcinoma. Science 223:698–701, 1984.

    PubMed  CAS  Google Scholar 

  251. O’Hara BM, Oskarsson M, Tainsky MA, Blair DG: Mechanism of activation of human ras genes cloned from a gastric adenocarcinoma and a pancreatic carcinoma cell line. Cancer Res 46:4695–4700, 1986.

    PubMed  Google Scholar 

  252. Liu E, Hjelle B, Morgan R, Hecht F, Bishop JM: Mutations of the Kirsten-ras proto-oncogene in human preleukemia. Nature 330:186–188, 1987.

    PubMed  CAS  Google Scholar 

  253. Hirai H, Kobayashi Y, Mano H, Hagiwara K, Maru Y, Omine M, Mizoguchi H, Nishida J, Takaku F: A point mutation at codon 13 of the N-ras oncogene in myelodysplastic syndrome. Nature 327:430–432, 1987.

    PubMed  CAS  Google Scholar 

  254. Leon J, Kamino H, Steinberg JJ, Pellicer A: H-ras activation in benign and self-regressing skin tumors (keratoacanthomas) in both humans and an animal model system. Mol Cell Biol 8:786–793, 1988.

    PubMed  CAS  Google Scholar 

  255. Albino AP, Le Strange R, Oliff AI, Furth ME, Old LJ: Transforming ras genes from human melanoma: A manifestation of tumor heterogeneity. Nature 308:68–72, 1984.

    Google Scholar 

  256. Guerrero I, Calzada P, Mayer A, Pellicer A: A molecular approach to leukemogenesis: Mouse lymphomas contain an activated c-ras oncogene. Proc Natl Acad Sci USA 81: 202–205, 1984.

    PubMed  CAS  Google Scholar 

  257. Diamond LE, Guerrero I, Pellicer A: Concomitant K- and N-ras gene point mutations in clonal murine lymphoma. Mol Cell Biol 8:2233–2236, 1988.

    PubMed  CAS  Google Scholar 

  258. Kataoka T, Powers S, McGill C, Fasaro O, Strathern J, Broach J, Wigler M: Genetic analysis of yeast RAS 1 and RAS 2 genes. Cell 37:437–445, 1984.

    PubMed  CAS  Google Scholar 

  259. Tatchell K, Chaleff DT, Defeo-Jones D, Scolnick EM: Requirement of either of a pair of ras related genes of Saccharomyces cerevisiae for spore viability, Nature 309:523–527, 1984.

    PubMed  CAS  Google Scholar 

  260. Schmitt HD, Wagner P, Pfaff E, Gallwitz D: The ras-related YPT1 gene product in yeast: A GTP-binding protein that might be involved in microtubule organization. Cell 47: 401–412, 1986.

    PubMed  CAS  Google Scholar 

  261. Segev N, Botstein D: The ras-like yeast YPT1 gene is itself essential for growth, sporulation, and starvation response. Mol Cell Biol 7:2367–2377, 1987.

    PubMed  CAS  Google Scholar 

  262. Schmitt HD, Puzicha M, Gallwitz D: Study of a temperature-sensitive mutant of the ras-related YPT1 gene product in yeast suggests a role in the regulation of intracellular calcium. Cell 53:635–647, 1988.

    PubMed  CAS  Google Scholar 

  263. Madaule P, Axel R, Myers AM: Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 84:779–783, 1987.

    PubMed  CAS  Google Scholar 

  264. Bos JL, Verlaan-de Vries M, Marshall CJ, Veeneman GH, van Boom JH, van der Eb AJ: A human gastric carcinoma contains a single mutated and an amplified normal allele of the Ki-ras oncogene. Nucleic Acids Res 14:1209–1217, 1986.

    PubMed  CAS  Google Scholar 

  265. Filmus JE, Buick RN: Stability of c-K-ras amplification during progression in a patient with adenocarcinoma of the ovary. Cancer Res 45:4468–4472, 1985.

    PubMed  CAS  Google Scholar 

  266. Winter E, Yamamoto F, Almoguera C, Perucho M: A method to detect and characterize point mutations in transcribed genes: amplification and overexpression of the mutant c-Ki-ras allele in human tumor cells. Proc Natl Acad Sci USA 82:7575–7579, 1985.

    PubMed  CAS  Google Scholar 

  267. Slamon DJ, deKernion JB, Verma IM, Cline MJ: Expression of cellular oncogenes in human malignancies. Science 224:256–262, 1984.

    PubMed  CAS  Google Scholar 

  268. Spandidos DA, Kerr IB: Elevated expression of the human ras oncogene family in premalignant and malignant tumours of the colorectum. Br J Cancer 49:681–688, 1984.

    PubMed  CAS  Google Scholar 

  269. Clanton DJ, Hattori S, Shih TY: Mutations of the ras gene product p21 that abolish guanine nucleotide binding. Proc Natl Acad Sci USA 83:5076–5080, 1986.

    PubMed  CAS  Google Scholar 

  270. Lacal JC, Aaronson SA: Activation of ras p21 transforming properties associated with an increase in the release rate of bound guanine nucleotide. Mol Cell Biol 6;4214–4220, 1986.

    PubMed  CAS  Google Scholar 

  271. Alonso T, Morgan RO, Marvizon JC, Zarbl H, Santos E: Malignant transformation by ras and other oncogenes produce common alterations in inositol phospholipid signaling pathways. Proc Natl Acad Sci USA 85:4271–4275, 1988.

    PubMed  CAS  Google Scholar 

  272. Santos E, Reddy EP, Pulciani S, Feldmann RJ, Barbacid M: Spontaneous activation of a human proto-oncogene. Proc Natl Acad Sci USA 80:4679–4682, 1983.

    PubMed  CAS  Google Scholar 

  273. Thein SL, Oscier DG, Flint J, Wainscoat JS: Ha-ras hypervariable alleles in myelodysplasia. Nature 321:84–85, 1986.

    PubMed  CAS  Google Scholar 

  274. McCormick F: ras GTPase activating protein: Signal transmitter and signal terminator. Cell 56:5–8, 1989.

    PubMed  CAS  Google Scholar 

  275. Feig LA, Pan BT, Roberts TM, Cooper GM: Isolation of ras GTP binding mutants using an in situ colony-binding assay. Proc Natl Acad Sci USA 83:4607–4611, 1986.

    PubMed  CAS  Google Scholar 

  276. Clarke S, Vogel JP, Deschenes RJ, Stock J: Posttranslational modification of the Ha-ras oncogene protein: Evidence for a third class of protein carboxyl methyltransferases. Proc Natl Acad Sci USA 85:4643–4647, 1988.

    PubMed  CAS  Google Scholar 

  277. Kamps MP, Buss JE, Sefton BM: Mutation of N-terminal glycine of p60src prevents both myristoylation and morphological transformation. Proc Natl Acad Sci USA 82:4625–4628, 1985.

    PubMed  CAS  Google Scholar 

  278. Sassone-Corsi P, Der CJ, Verma IM: Ras-induced differentiation of PC12 cells: Possible involvement of fos and jun. Mol Cell Biol, in press.

    Google Scholar 

  279. Molenaar CMT, Prange R, Gallwitz D: A carboxyl-terminal cysteine residue is required for palmitic acid binding and biological activity of the ras-related yeast YPT1 protein. EMBO J 7:971–976, 1988.

    PubMed  CAS  Google Scholar 

  280. Oshimura M, Gilmer TM, Barrett JC. Nonrandom loss of chromosome 15 in Syrian hamster tumours induced by v-Ha-ras plus v-myc oncogenes. Nature 316:636–639, 1985.

    PubMed  CAS  Google Scholar 

  281. Katan M, Parker PJ: Oncogenes and cell control. Nature 332:203, 1988.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Der, C.J. (1989). The ras family of oncogenes. In: Benz, C., Liu, E. (eds) Oncogenes. Cancer Treatment and Research, vol 47. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1599-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1599-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8885-5

  • Online ISBN: 978-1-4613-1599-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics