Skip to main content

Interleukin-7 and lymphopoiesis: Biological and clinical implications

  • Chapter
Cytokines: Interleukins and Their Receptors

Part of the book series: Cancer Treatment and Research ((CTAR,volume 80))

Abstract

IL-7 was identified in 1988 following an intensive search for bone-marrow stromal cell growth factors involved in early steps of B-cell genesis [1]. The role of IL-7 has since been expanded to include functions as a thymocyte growth factor and a pre-T-cell differentiation factor, as well as an activation factor for monocytes and macrophages, NK cells, cytolytic T lymphocytes (CTL’s), and lymphokine-activated killer cell (LAK) activity. Several preclinical studies in mice predict that IL-7 may be of use in antitumor therapy and acceleration of lymphoid recovery in lymphopenic patients. In addition, IL-7 appears to hold promise in enhancing antimicrobial responses. This chapter describes in detail the current status of IL-7 as a regulator of lymphopoiesis and effector cell function, and the potential therapeutic implications of the IL-7 preclinical studies performed in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Namen AE, Schmierer AE, March CJ, Overell RW, Park LS, Urdal DL, Mochizuki DY. B cell precursor growth-promoting activity: Purification and characterization of a growth factor active on lymphocyte precursors. J Exp Med 167:988–1002, 1988.

    PubMed  CAS  Google Scholar 

  2. Namen AE, Lupton S, Hjerrild K, Wignall J, Mochizuki DY, Schmierer A, Mosley B, March CJ, Urdal D, Gillis S. Stimulation of B-cell progenitors by cloned murine inter-leukin-7. Nature 333:571–573, 1988.

    PubMed  CAS  Google Scholar 

  3. Goodwin RG, Lupton S, Schmierer A, Hjerrild KJ, Jerzy R, Clevenger W, Gillis S, Cosman D, Namen AE. Human interleukin 7: Molecular cloning and growth factor activity on human and murine B-lineage cells. Proc Natl Acad Sci USA 86:302–306, 1989.

    PubMed  CAS  Google Scholar 

  4. Boulay J, Paul WE. Hematopoietin sub-family classification based on size, gene organization and sequence homology. Current Biology 3:573–581, 1993.

    PubMed  CAS  Google Scholar 

  5. Sutherland GR, Baker E, Fernandez KE, Callen DF, Goodwin RG, Lupton S, Namen AE, Shannon MF, Vadas MA. The gene for human interleukin 7 (IL7) is at 8ql2–13. Hum Genet 82:371–372, 1989.

    PubMed  CAS  Google Scholar 

  6. Lupton SD, Gimpel S, Jerzy R, Brunton LL, Hjerrild KA, Cosman D, Goodwin RG. Characterization of the human and murine IL-7 genes. J Immunol 144:3592–3601, 1990.

    PubMed  CAS  Google Scholar 

  7. Updyke LW, Cocke KS, Wierda D. Age-related changes in production of interleukin-7 (IL-7) by murine long-term bone marrow cultures (LTBMC). Mech Ageing Dev 69: 109–117, 1993.

    PubMed  CAS  Google Scholar 

  8. Kenai H, Matsuzaki G, Nakamura T, Yoshikai Y, Nomoto K. Thymus-derived cytokine(s) including interleukin-7 induce increase of T cell receptor alpha/beta+ CD4-CD8- T cell which are extrathymically differentiated in athymic nude mice. Eur J Immunol 23: 1818–1825, 1993.

    PubMed  CAS  Google Scholar 

  9. Overell RW, Clark L, Lynch D, Jerzy R, Schmierer A, Weisser KE, Namen AE, Goodwin RG. Interleukin-7 retroviruses transform pre-B cells by an autocrine mechanism not evident in Abelson murine leukemia virus transformants. Mol Cell Biol 11:1590–1597, 1991.

    PubMed  CAS  Google Scholar 

  10. Chen SC, Redenius D, Young JC, Schwartz RC. Synergy of IL-7 and v-Ha-ras in the in vitro neoplastic progression of murine pre-B cells. Oncogene 8:2119–2125, 1993.

    PubMed  CAS  Google Scholar 

  11. Young JC, Gishizky ML, Witte ON. Hyperexpression of interleukin-7 is not necessary or sufficient for transformation of a pre-B lymphoid cell line. Mol Cell Biol 11:854–863, 1991.

    PubMed  CAS  Google Scholar 

  12. Benjamin D, Sharma V, Knoblock TJ, Armitage RJ, Dayton MA, Goodwin RG. Human B cell lines constitutively secrete IL-7 and express IL7 receptors. J Immunol 152: 4749–4757, 1994.

    PubMed  CAS  Google Scholar 

  13. Park LS, Friend DJ, Schmierer AE, Dower SK, Namen AE. Murine interleukin 7 (IL-7) receptor: Characterization on an IL-7-dependent cell line. J Exp Med 171:1073–1089, 1990.

    PubMed  CAS  Google Scholar 

  14. Goodwin RG, Friend D, ziegler SF, Jerzy R, Falk BA, Gimpel S, Cosman D, Dower SK, March CJ, Namen AE, et al. Cloning of the human and murine interleukin-7 receptors: Demonstration of a soluble form and homology to a new receptor superfamily. Cell 60:941–951, 1990.

    PubMed  CAS  Google Scholar 

  15. Aggarwal BB, Pocsik E. Cytokines: From clone to clinic. Arch Biochem Biophys 292: 335–359, 1992.

    PubMed  CAS  Google Scholar 

  16. Schlossman SF, Boumsell L, Gilks W, Harlan JM, Kishimoto T, Morimoto C, Ritz J, Shaw S, Silverstein RL, Springer TA, Tedder TF, Todd RF. CD antigens 1993. J Immunol 152:1–2, 1994.

    PubMed  CAS  Google Scholar 

  17. Armitage RJ, Ziegler SF, Friend DJ, Park LS, Fanslow WC. Identification of a novel low-affinity receptor for human interleukin-7. Blood 79:1738–1745, 1992.

    PubMed  CAS  Google Scholar 

  18. Page TH, Willcocks JL, Taylor Fishwick DA, Foxwell BM. Characterization of a novel high affinity human IL-7 receptor: Expression on T cells and association with IL-7 driven proliferation. J Immunol 151:4753–4763, 1993.

    PubMed  CAS  Google Scholar 

  19. Cosman D. The hematopoietin receptor superfamily. Cytokine 5:95–106, 1993.

    PubMed  CAS  Google Scholar 

  20. Kondo M, Takeshita T, Higuchi M, Nakamura M, Sudo T, Nishikawa S-I, Sugamura K. Functional participation of the IL-2 receptor γ chain in IL-7 receptor complexes. Science 263:1453–1454, 1994.

    PubMed  CAS  Google Scholar 

  21. Kondo M, Takeshita T, Ishii N, Nakamura M, Watanabe S, Arai K, Sugamura K. Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262:1874–1877, 1993.

    PubMed  CAS  Google Scholar 

  22. Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, Leonard WJ. Interleukin-2 receptor gamma chain: A functional component of the interleukin-7 receptor (see comments). Science 262:1877–1880, 1993.

    PubMed  CAS  Google Scholar 

  23. Russell SM, Keegan AD, Harada N, Nakamura Y, Noguchi M, Leland P, Friedmann MC, Miyajima A, Puri RK, Paul WE, Leonard WJ. Interleukin-2 receptor gamma chain: A functional component of the interleukin-4 receptor. Science 262:1880–1883, 1993.

    PubMed  CAS  Google Scholar 

  24. Lynch M, Baker E, Park LS, Sutherland GR, Goodwin RG. The interleukin-7 receptor gene is at 5pl3. Hum Genet 89:566–568, 1992.

    PubMed  CAS  Google Scholar 

  25. Gearing DP, Druck T, Huebner K, Overhauser J, Gilbert DJ, Copeland NG, Jenkins NA. The leukemia inhibitory factor receptor (LIFR) gene is located within a cluster of cytokine receptor loci on mouse chromosome 15 and human chromosome 5pl2-pl3. Genomics 18:148–150, 1993.

    PubMed  CAS  Google Scholar 

  26. Pleiman CM, Gimpel SD, Park LS, Harada H, Taniguchi T, Ziegler SF. Organization of the murine and human interleukin-7 receptor genes: Two mRNAs generated by differential splicing and presence of a type I-interferon-inducible promoter. Mol Cell biol 11:3052–3059, 1991.

    CAS  Google Scholar 

  27. Garvy BA, Riley RL. IFN-γ abrogates IL-7 dependent proliferation in pre-B cells, conciding with onset of apoptosis. Immunology 81:381–388, 1994.

    PubMed  CAS  Google Scholar 

  28. Yamada G, Ogawa M, Akagi K, Miyamoto H, Nakano N, Itoh S, Miyazaki J, Nishikawa S, Yamamura K, Taniguchi T. Specific depletion of the B-cell population induced by aberrant expression of human interferon regulatory factor 1 gene in transgenic mice. Proc Natl Acad Sci USA 88:532–536, 1991.

    PubMed  CAS  Google Scholar 

  29. Foxwell BM, Taylor Fishwick DA, Simon JL, Page TH, Londei M. Activation induced changes in expression and structure of the IL-7 receptor on human T cells. Int Immunol 4:277–282, 1992.

    PubMed  CAS  Google Scholar 

  30. Dibirdik I, Langlie MC, Ledbetter JA, Tuel Ahlgren L, Obuz V, Waddick KG, Gajl Peczalska K, Schieven GL, Uckun FM. Engagement of interleukin-7 receptor stimulates tyrosine phosphorylation, phosphoinositide turnover, and clonal proliferation of human T-lineage acute lymphoblastic leukemia cells. Blood 78:564–570, 1991.

    PubMed  CAS  Google Scholar 

  31. Uckun FM, Dibirdik I, Smith R, Tuel Ahlgren L, Chandan Langlie M, Schieven GL, Waddick KG, Hanson M, Ledbetter JA. Interleukin 7 receptor ligation stimulates tyrosine phosphorylation, inositol phospholipid turnover, and clonal proliferation of human B-cell precursors. Proc Natl Acad Sci USA 88:3589–3593, 1991.

    PubMed  CAS  Google Scholar 

  32. Uckun FM, Tuel Ahlgren L, Obuz V, Smith R, Dibirdik I, Hanson M, Langlie MC, Ledbetter JA. Interleukin 7 receptor engagement stimulates tyrosine phosphorylation, inositol phospholipid turnover, proliferation, and selective differentiation to the CD4 lineage by human fetal thymocytes. Proc Natl Acad Sci USA 88:6323–6327, 1991.

    PubMed  CAS  Google Scholar 

  33. Roifman CM, Wang GX, Freedman M, Pan ZQ. IL-7 receptor mediates tyrosine phosphorylation but does not activate the phosphatidylinositol-phospholipase C-gamma 1 pathway. J Immunol 148:1136–1142, 1992.

    PubMed  CAS  Google Scholar 

  34. Yip Schneider MT, Horie M, Broxmeyer HE. Characterization of interleukin-7-induced changes in tyrosine phosphorylation and c-myc gene expression in normal human T cells. Exp Hematol 21:1648–1656, 1993.

    PubMed  CAS  Google Scholar 

  35. Seckinger P, Fougereau M. Activation of src family kinases in human pre-B cells by IL-7. J Immunol 153:97–109, 1994.

    PubMed  CAS  Google Scholar 

  36. Venkitaraman AR, Cowling RJ. Interleukin 7 receptor functions by recruiting the tyrosine kinase p59fyn through a segment of its cytoplasmic tail. Proc Natl Acad Sci USA 89:12083–12087, 1992.

    PubMed  CAS  Google Scholar 

  37. Dadi HK, Ke S, Roifman CM. Interleukin 7 receptor mediates the activation of phos-phatidylinositol-3 kinase in human B-cell precursors. Biochem Biophys Res Commun 192:459–464, 1993.

    PubMed  CAS  Google Scholar 

  38. Dadi HK, Roifman CM. Activation of phosphatidylinositol-3 kinase by ligation of the interleukin-7 receptor on human thymocytes. J Clin Invest 92:1559–1563, 1993.

    PubMed  CAS  Google Scholar 

  39. Seckinger P, Milili M, Schiff C, Fougereau M. Interleukin-7 regulates c-myc expression in murine T cells and thymocytes: A role for tyrosine kinase(s) and calcium mobilization. Eur J Immunol 24:716–722, 1994.

    PubMed  CAS  Google Scholar 

  40. Domen J, van der Lugt NM, Acton D, Laird PW, Linders K, Berns A. Pim-1 levels determine the size of early B lymphoid compartments in bone marrow. J Exp Med 178:1665–1673, 1993.

    PubMed  CAS  Google Scholar 

  41. Li Y, Hayakawa K, Hardy RR. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med 178:951–960, 1993.

    PubMed  CAS  Google Scholar 

  42. Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 173:1213–1225, 1991.

    PubMed  CAS  Google Scholar 

  43. Lee G, Namen AE, Gillis S, Ellingsworth LR, Kincade PW. Normal B cell precursors responsive to recombinant murine IL-7 and inhibition of IL-7 activity by transforming growth factor-beta. J Immunol 142:3875–3883, 1989.

    PubMed  CAS  Google Scholar 

  44. Sudo T, Ito M, Ogawa Y, Iizuka M, Kodama H, Kunisada T, Haysashi S, Ogawa M, Sakai K, Nishikawa S. Interleukin 7 production and function in stromal cell-dependent B cell development. J Exp Med 170:333–338, 1989.

    PubMed  CAS  Google Scholar 

  45. Cumano A, Dorshkind K, Gillis S, Paige CJ. The influence of S17 stromal cells and interleukin 7 on B cell development. Eur J Immunol 20:2183–2189, 1990.

    PubMed  CAS  Google Scholar 

  46. Hayashi S, Kunisada T, Ogawa M, Sudo T, Kodama H, Suda T, Nishikawa S. Stepwise progression of B lineage differentiation supported by interleukin 7 and other stromal cell molecules. J Exp Med 171:1683–1695, 1990.

    PubMed  CAS  Google Scholar 

  47. Gunji Y, Sudo T, Suda J, Yamaguchi Y, Nakauchi H, Nishikawa S, Yanai N, Obinata M, Yanagisawa M, Miura Y, et al. Support of early B-cell differentiation in mouse fetal liver by stromal cells and interleukin-7. Blood 77:2612–2617, 1991.

    PubMed  CAS  Google Scholar 

  48. Ryan DH, Nuccie BL, Ritterman I, Liesveld JL, Abboud CN. Cytokine regulation of early human lymphopoiesis. J Immunol 152:5248–5249, 1994.

    Google Scholar 

  49. Era T, Ogawa M, Nishikawa S, Okamoto M, Honjo T, Akagi K, Miyazaki J, Yamamura K. Differentiation of growth signal requirement of B lymphocyte precursor is directed by expression of immunoglobulin. EMBO J 10:337–342, 1991.

    PubMed  CAS  Google Scholar 

  50. Henderson AJ, Narayanan R, Collins L, Dorshkind K. Status of kappa L chain gene rearrangements and c-kit and IL-7 receptor expression in stromal cell-dependent pre-B cells. J Immunol 149:1973–1979, 1992.

    PubMed  CAS  Google Scholar 

  51. Joshi PC, Choi YS. Human interleukin 7 is a B cell growth factor for activated B cells. Eur J Immunol 21:681–686, 1991.

    PubMed  CAS  Google Scholar 

  52. McNiece IK, Langley KE, Zsebo KM. The role of recombinant stem cell factor in early B cell development: Synergistic interaction with IL-7. J Immunol 146:3785–3790, 1991.

    PubMed  CAS  Google Scholar 

  53. Funk PE, Varas A, Witte PL. Activity of stem cell factor and IL-7 in combination on normal bone marrow B lineage cells. J Immunol 150:748–752, 1993.

    PubMed  CAS  Google Scholar 

  54. Billips LG, Petitte D, Dorshkind K, Narayanan R, Chiu CP, Landreth KS. Differential roles of stromal cells, interleukin-7, and kit-ligand in the regulation of B lymphopoiesis. Blood 79:1185–1192, 1992.

    PubMed  CAS  Google Scholar 

  55. Suda T, Okada S, Suda J, Miura Y, Ito M, Sudo T, Hayashi S, Nishikawa S, Nakauchi H. A Stimulatory effect of recombinant murine interleukin-7 (IL-7) on B-cell colony formation and an inhibitory effect of IL-1 alpha. Blood 74:1936–1941, 1989.

    PubMed  CAS  Google Scholar 

  56. Morrow MA, Lee G, Gillis S, Yancopoulos GD, Alt FW. Interleukin-7 induces n-myc and c-myc expression in normal precursor B lymphocytes. Genes Dev 6:61–70, 1992.

    PubMed  CAS  Google Scholar 

  57. Oltz EM, Yancopoulos GC, Morrow MA, Rolink A, Lee G, Wong F, Kaplan K, Gillis S, Melchers F, Alt FW. A novel regulatory myosin light chain gene distinguishes pre-B cell subsets and is IL-7 inducible. EMBO J 11:2759–2767, 1992.

    PubMed  CAS  Google Scholar 

  58. Wolf ML, Weng WK, Stieglbauer KT, Shah N, LeBien TW. Functional effect of IL-7-enhanced CD19 expression on human B cell precursors. J Immunol 151:138–148, 1993.

    PubMed  CAS  Google Scholar 

  59. Sherwood PJ, Weissman IL. The growth factor IL-7 induces expression of a transformation-associated antigen in normal pre-B cells. Int Immunol 2:399–406, 1990.

    PubMed  CAS  Google Scholar 

  60. Cumano A, Paige CJ, Iscove NN, Brady G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356:612–615, 1992.

    PubMed  CAS  Google Scholar 

  61. Takai Y, Sakata T, Iwagami S, Tai XG, Kita Y, Hamaoka T, Sakaguchi N, Yamagishi H, Tsuruta Y, Teraoka H, et al. Identification of IL-7-dependent bone marrow-derived Thy-l-B220-lymphoid cell clones that rearrange and express both Ig and T cell receptor genes. J Immunol 148:1329–1337, 1992.

    PubMed  CAS  Google Scholar 

  62. Gutierrez Ramos JC, Palacios R. In vitro differentiation of embryonic stem cells into lymphocyte precursors able to generate T and B lymphocytes in vivo. Proc Natl Acad Sei USA 89:9171–9175, 1992.

    CAS  Google Scholar 

  63. Hori T, Phillips JH, Duncan B, Lanier LL, Spits H. Human fetal liver-derived CD7+CD21owCD3-CD56- clones that express CD3 gamma, delta, and epsilon and proliferate in response to interleukin-2 (IL-2), IL-3, IL-4, or IL-7: implications for the relationship between T and natural killer cells. Blood 80:1270–1278, 1992.

    PubMed  CAS  Google Scholar 

  64. Appasamy PM, Kenniston TW Jr, Weng Y, Holt EC, Kost J, Chambers WH. Interleukin 7-induced expression of specific T cell receptor gamma variable region genes in murine fetal liver cultures. J Exp Med 178:2201–2206, 1993.

    PubMed  CAS  Google Scholar 

  65. Appasamy PM. IL 7-induced T cell receptor-gamma gene expression by pre-T cells in murine fetal liver cultures. J Immunol 149:1649–1656, 1992.

    PubMed  CAS  Google Scholar 

  66. Golunski E, Palacios R. Fetal liver and bone marrow JORO 75+ lymphocyte progenitors are precursors of CD4+8- TCR/CD3- early thymocytes. J Exp Med 179:721–725, 1994.

    PubMed  CAS  Google Scholar 

  67. Conlon PJ, Morrissey PJ, Nordan RP, Grabstein KH, Prickett KS, Reed SG, Goodwin R, Cosman D, Namen AE. Murine thymocytes proliferate in direct response to interleukin-7. Blood 74:1368–1373, 1989.

    PubMed  CAS  Google Scholar 

  68. Watson JD, Morrissey PJ, Namen AE, Conlon PJ, Widmer MB. Effect of IL-7 on the growth of fetal thymocytes in culture. J Immunol 143:1215–1222, 1989.

    PubMed  CAS  Google Scholar 

  69. Wiles MV, Ruiz P, Imhof BA. Interleukin-7 expression during mouse thymus development. Eur. J Immunol 22:1037–1042, 1992.

    PubMed  CAS  Google Scholar 

  70. Plum J, De Smedt M, Leclercq G. Exogenous IL-7 promotes the growth of CD3-CD4- CD8-CD44+CD25+/- precursor cells and blocks the differentiation pathway of TCR-alpha beta cells in fetal thymus organ culture. J Immunol 150:2706–2716, 1993.

    PubMed  CAS  Google Scholar 

  71. Okazaki H, Ito M, Sudo T, Hattori M, Kano S, Katsura Y, Minato N. IL-7 promotes thymocyte proliferation and maintains immunocompetent thymocytes bearing alpha beta or gamma delta delta T-cell receptors in vitro: Synergism with IL-2. J Immunol 143:2917–2922, 1989.

    PubMed  CAS  Google Scholar 

  72. Sudo T, Nishikawa S, Ohno N, Akiyma N, Tamakoshi M, Yoshida H. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci USA 90:9125–9129, 1993.

    PubMed  CAS  Google Scholar 

  73. Suda T, Zlotnik A. IL-7 maintains the T cell precursor potential of CD3-CD4-CD8-thymo-cytes. J Immunol 146:3068–3073, 1991.

    PubMed  CAS  Google Scholar 

  74. Leclercq G, De Smedt M, Plum J. Cytokine production and responsiveness of fetal T-cell receptor V gamma 3 thymocytes. Scand J Immunol 36:833–841, 1992.

    PubMed  CAS  Google Scholar 

  75. Leclercq G, De Smedt M, Plum J. Presence of CD8 alpha-CD8 beta-positive TcR gamma/delta thymocytes in the fetal murine thymus and their in vitro expansion with interleukin-7. Eur J Immunol 22:2189–2193, 1992.

    PubMed  CAS  Google Scholar 

  76. Lynch F, Shevach EM. Activation requirements of newborn thymic gamma delta T cells. J Immunol 149:2307–2314, 1992.

    PubMed  CAS  Google Scholar 

  77. He W, Kabelitz D. Differential effects of interleukin-7 and interleukin-2 on T-cell receptor gamma delta-expressing cells within CD4-CD8- postnatal human thymocytes. Int Arch Allergy Immunol 102:321–326, 1993.

    PubMed  CAS  Google Scholar 

  78. Everson MP, Eldridge JH, Koopman WJ. Synergism of interleukin 7 with the thymocyte growth factors interleukin 2, interleukin 6, and tumor necrosis factor alpha in the induction of thymocyte proliferation. Cell Immunol 127:470–482, 1990.

    PubMed  CAS  Google Scholar 

  79. Godfrey DI, Zlotnik A, Suda T. Phenotypic and functional characterization of c-kit expression during intrathymic T cell development. J Immunol 149:2281–2285, 1992.

    PubMed  CAS  Google Scholar 

  80. Chantry D, Turner M, Feldmann M. Interleukin 7 (murine pre-B cell growth factor/lymphopoietin 1) stimulates thymocyte growth: Regulation by transforming growth factor beta. Eur J Immunol 19:783–786, 1989.

    PubMed  CAS  Google Scholar 

  81. Suda T, Murray R, Guidos C, Zlotnik A. Growth-promoting activity of IL-1 alpha, IL-6, and tumor necrosis factor-alpha in combination with IL-2, IL-4, or IL-7 on murine thymocytes. Differential effects on CD4/CD8 subsets and on CD3+/CD3-double-negative thymocytes. J Immunol 144:3039–3045, 1990.

    PubMed  CAS  Google Scholar 

  82. Herbelin A, Machavoine F, Schneider E, Papiernik M, Dy M. IL-7 is requisite for IL-1-induced thymocyte proliferation: Involvement of IL-7 in the synergistic effects of granulocyte-macrophage colony-stimulating factor or tumor necrosis factor with IL-1. J Immunol 148:99–105, 1992.

    PubMed  CAS  Google Scholar 

  83. Groh V, Fabbi M, Strominger JL. Maturation or differentiation of human thymocyte precursors in vitro? Proc Natl Acad Sci USA 87:5973–5977, 1990.

    PubMed  CAS  Google Scholar 

  84. Hori T, Cupp J, Wrighton N, Lee F, Spits H. Identification of a novel human thymocyte subset with a phenotype of CD3-CD4+CD8 alpha+beta-1. Possible progeny of the CD3-CD4- CD8- subset. J Immunol 146:4078–4084, 1991.

    PubMed  CAS  Google Scholar 

  85. Muegge K, Vila MP, Durum SK. Interleukin-7: A cofactor for V(D)J rearrangement of the T cell receptor beta gene. Science 261:93–95, 1993.

    PubMed  CAS  Google Scholar 

  86. Watanabe Y, Sudo T, Minato N, Ohnishi A, Katsura Y. Interleukin 7 preferentially supports the growth of gamma delta T cell receptor-bearing T cells from fetal thymocytes in vitro. Int Immunol 3:1067–1075, 1991.

    PubMed  CAS  Google Scholar 

  87. Morrissey PJ, Goodwin RG, Nordan RP, Anderson D, Grabstein KH, Cosman D, Sims J, Lupton S, Acres B, Reed SG. Recombinant interleukin 7, pre-B cell growth factor, has costimulatory activity on purified mature T cells. J Exp Med 169:707–716, 1989.

    PubMed  CAS  Google Scholar 

  88. Grabstein KH, Namen AE, Shanebeck K, Voice RF, Reed SG, Widmer MB. Regulation of T cell proliferation by IL-7. J Immunol 144:3015–3020, 1990.

    PubMed  CAS  Google Scholar 

  89. Armitage RJ, Namen AE, Sassenfeld HM, Grabstein KH. Regulation of human T cell proliferation by IL-7. J Immunol 144:938–941, 1990.

    PubMed  CAS  Google Scholar 

  90. Welch, PA, Namen AE, Goodwin RG, Armitage R, Cooper MD. Human IL-7: A novel T cell growth factor. J Immunol 143:3562–3567, 1989.

    PubMed  CAS  Google Scholar 

  91. Hickman CJ, Crim JA, Mostowski HS, Siegel JP. Regulation of human cytotoxic T lymphocyte development by IL-7. J Immunol 145:2415–2420, 1990.

    PubMed  CAS  Google Scholar 

  92. Bertagnolli M, Herrmann S. IL-7 supports the generation of cytotoxic T lymphocytes from thymocytes: Multiple lymphokines required for proliferation and cytotoxicity. J Immunol 145:1706–1712, 1990.

    PubMed  CAS  Google Scholar 

  93. Alderson MR, Sassenfeld HM, Widmer MB. Interleukin 7 enhances cytolytic T lymphocyte generation and induces lymphokine-activated killer cells from human peripheral blood. J Exp Med 172:577–587, 1990.

    PubMed  CAS  Google Scholar 

  94. Jicha DL, Schwarz S, Mule JJ, Rosenberg SA. Interleukin-7 mediates the generation and expansion of murine allosensitized and antitumor CTL. Cell Immunol 141:71–83, 1992.

    PubMed  CAS  Google Scholar 

  95. Smyth MJ, Norihisa Y, Gerard JR, Young HA, Ortaldo JR. IL-7 regulation of cytotoxic lymphocytes: Pore-forming protein gene expression, interferon-gamma production, and cytotoxicity of human peripheral blood lymphocytes subsets. Cell Immunol 138:390–403, 1991.

    PubMed  CAS  Google Scholar 

  96. Kos FJ, Mullbacher A. IL-2-independent activity of IL-7 in the generation of secondary antigen-specific cytotoxic T cell responses in vitro. J Immunol 150:387–393, 1993.

    PubMed  CAS  Google Scholar 

  97. Whiteside T, Miescher S, Hurlimann J, Moretta L, Von Fliedner V. Clonal analysis and in situ characterization of lymphocytes infiltratirig human breast carcinomas. Cancer Immunol Immunother 23:169–178, 1986.

    PubMed  CAS  Google Scholar 

  98. Sica D, Rayman P, Stanley J, Edinger M, Tubbs RR, Klein E, Bukowski R, Finke JH. Interleukin 7 enhances the proliferation and effector function of tumor-infiltrating lymphocytes from renal-cell carcinoma. Int J Cancer 53:941–947, 1993.

    PubMed  CAS  Google Scholar 

  99. Ditonno P, Tso CL, Sakata T, deKernion JB, Belldegrun A. Regulatory effects of interleukin-7 on renal tumor infiltrating lymphocytes. Urol Res 20:205–210, 1992.

    PubMed  CAS  Google Scholar 

  100. Lotze MT, Zeh HJ III, Elder EM, Cai Q, Pippin BA, Rosenstein MM, Whiteside TL, Herberman R. Use of T-cell growth factors (interleukins 2, 4, 7, 10, and 12) in the evaluation of T-cell reactivity to melanoma. J Immunother 12:212–217, 1992.

    PubMed  CAS  Google Scholar 

  101. Lotze MT, Grimm EA, Mazumder A, Strausser JL, Rosenberg SA. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T celi growth factor. Cancer Res 41:4420, 1981.

    PubMed  CAS  Google Scholar 

  102. Lynch DH, Miller RE. Induction of murine lymphokine-activated killer cells by recombinant IL-7. J Immunol 145:1983–1990, 1990.

    PubMed  CAS  Google Scholar 

  103. Stotter H, Custer MC, Bolton ES, Guedez L, Lotze MT. IL-7 induces human lymphokine-activated killer cell activity and is regulated by IL-4. J Immunol 146:150–155, 1991.

    PubMed  CAS  Google Scholar 

  104. Naume B, Espevik T. Effects of IL-7 and IL-2 on highly enriched CD56+ natural killer cells. A comparative study. J Immunol 147:2208–2214, 1991.

    PubMed  CAS  Google Scholar 

  105. Naume B, Gately M, Espevik T. A comparative study of IL-12 (cytotoxic lymphocyte maturation factor)-, IL-2-, and IL-7-induced effects on immunomagnetically purified CD56+ NK cells. J Immunol 148:2429–2436, 1992.

    PubMed  CAS  Google Scholar 

  106. Pavletic Z, Benyunes MC, Thompson JA, Lindgren CG, Massumoto C, Alderson MR, Buckner CD, Fefer A. Induction by interleukin-7 of lymphokine-activated killer activity in lymphocytes from autologous and syngeneic marrow transplant recipients before and after systemic interleukin-2 therapy. Exp Hematol 21:1371–1378, 1993.

    PubMed  CAS  Google Scholar 

  107. Naume B, Johnsen AC, Espevik T, Sundan A. Gene expression and secretion of cytokines and cytokine receptors from highly purified CD56+ natural killer cells stimulated with interleukin-2, interleukin-7 and interleukin-12. Eur J Immunol 23:1831–1838, 1993.

    PubMed  CAS  Google Scholar 

  108. Robertson MJ, Manley TJ, Donahue C, Levine H, Ritz J. Costimulatory signals are required for optimal proliferation of human natural killer cells. J Immunol 150:1705–1714, 1993.

    PubMed  CAS  Google Scholar 

  109. Pollack SB, Tsuji J. Effects of rIL-7 on murine bone marrow NK precursor cells. Cell Immunol 151:1–11, 1993.

    PubMed  Google Scholar 

  110. Alderson MR, Tough TW, Ziegler SF, Grabstein KH. Interleukin 7 induces cytokine secretion and tumoricidal activity by human peripheral blood monocytes. J Exp Med 173:923–930, 1991.

    PubMed  CAS  Google Scholar 

  111. Ziegler SF, Tough TW, Franklin TL, Armitage RJ, Alderson MR. Induction of macrophage inflammatory protein-1 beta gene expression in human monocytes by lipopoly-saccharide and IL-7. J Immunol 147:2234–2239, 1991.

    PubMed  CAS  Google Scholar 

  112. Standiford TJ, Strieter RM, Allen RM, Burdick MD, Kunkel SL. IL-7 up-regulates the expression of IL-8 from resting and stimulated human blood monocytes. J Immunol 149:2035–2039, 1992.

    PubMed  CAS  Google Scholar 

  113. Gessner A, Vieth M, Will A, Schroppel K, Rollinghoff M. Interleukin-7 enhances antimicrobial activity angainst Leishmania major in murine macrophages. Infect Immun 61:4008–4012, 1993.

    PubMed  CAS  Google Scholar 

  114. Jacobsen FW, Veiby OP, Jacobsen Sten EW. IL-7 stimulates CSF-induced proliferation of murine bone marrow macrophages and Mac-1+ myeloid progenitors in vitro. J Immunol 153:270–276, 1994.

    PubMed  CAS  Google Scholar 

  115. Damia G, Komschlies KL, Faltynek CR, Ruscetti FW, Wiltrout RH. Administration of recombinant human interleukin-7 alters the frequency and number of myeloid progenitor cells in the bone marrow and spleen of mice. Blood 79:1121–1129, 1992.

    PubMed  CAS  Google Scholar 

  116. Faltynek CR, Wang S, Miller D, Young E, Tiberio L, Kross K, Kelley M, Kloszewski E. Administration of human recombinant IL-7 to normal and irradiated mice increases the numbers of lymphocytes and some immature cells of the myeloid lineage. J Immunol 149:1276–1282, 1992.

    PubMed  CAS  Google Scholar 

  117. Grzegorzewski K, Komschlies KL, Mori M, Kaneda K, Usui N, Faltynek CR, Keller JR, Ruscetti FW, Wiltrout RH. Administration of recombinant human interleukin-7 to mice induces the exportation of myeloid progenitor cells from the bone marrow to peripheral sites. Blood 83:377–385, 1994.

    PubMed  CAS  Google Scholar 

  118. Jacobsen FW, Veiby OP, Skjonsberg C, Jacobsen SE. Novel role of interleukin 7 in myelopoiesis: Stimulation of primitive murine hematopoietic progenitor cells. J Exp Med 178:1777–1782, 1993.

    PubMed  CAS  Google Scholar 

  119. Vellenga E, Esselink MT, Straaten J, Stulp BK, De Wolf JT, Brons R, Giannotti J, Smit JW, Halie MR. The supportive effects of IL-7 on eosinophil progenitors from human bone marrow cells can be blocked by anti-IL-5. J Immunol 149:2992–2995, 1992.

    PubMed  CAS  Google Scholar 

  120. Araujo DM, Cotman CW. Trophic effects of interleukin-4, -7 and -8 on hippocampal neuronal cultures: Potential involvement of glial-derived factors. Brain Res 600:49–55, 1993.

    PubMed  CAS  Google Scholar 

  121. Mehler MF, Rozental R, Dougherty M, Spray DC, Kessler JA. Cytokine regulation of neuronal differentiation of hippocampal progenitor cells. Nature 362:62–65, 1993.

    PubMed  CAS  Google Scholar 

  122. Morrissey PJ, Conlon P, Braddy S, Williams DE, Namen AE, Mochizuki DY. Administration of IL-7 to mice with cyclophosphamide-induced lymphopenia accelerates lymphocyte repopulation. J Immunol 146:1547–1552, 1991.

    PubMed  CAS  Google Scholar 

  123. Morrissey PJ, Conlon P, Charrier K, Braddy S, Alpert A, Williams D, Namen AE, Mochizuki D. Administration of IL-7 to normal mice stimulates B-lymphopoiesis and peripheral lymphadenopathy. J Immunol 147:561–568, 1991.

    PubMed  CAS  Google Scholar 

  124. Fraser CC, Thacker JD, Hogge DE, Fatur Saunders D, Takei F, Humphries RK. Alterations in lymphopoiesis after hematopoietic reconstitution with IL-7 virus-infected bone marrow. J Immunol 151:2409–2418, 1993.

    PubMed  CAS  Google Scholar 

  125. Samaridis J, Casorati G, Traunecker A, Iglesias A, Gutierrez JC, Muller U, Palacos R. Development of lymphocytes in interleukin-7 transgenic mice. Eur J Immunol 21: 453–460, 1991.

    PubMed  CAS  Google Scholar 

  126. Fisher AG, Burdet C, LeMeur M, Haasner D, Gerber P, Ceredig R. Lymphoproliferative disorders in an IL-7 transgenic mouse line. Leukemia 7 (Supp 12):S66-S68, 1993.

    PubMed  Google Scholar 

  127. Rich BE, Campos Torres J, Tepper RI, Moreadith RW, Leder P. Cutaneous lymphopro-liferation and lymphomas in interleukin 7 transgenic mice. J Exp Med 177:305–316, 1993.

    PubMed  CAS  Google Scholar 

  128. Uehira M, Matsuda H, Hikita I, Sakata T, Fujiwara H, Nishimoto H. The development of dermatitis infiltrated by gamma delta T cells in IL-7 transgenic mice. Int Immunol 5: 1619–1627, 1993.

    PubMed  CAS  Google Scholar 

  129. Matsue H, Bergstresser PR, Takashima A. Keratinocyte-derived IL-7 serves as a growth factor for dendritic epidermal T cells in mice. J Immunol 151:6012–6019, 1993.

    PubMed  CAS  Google Scholar 

  130. Matsue H, Bergstresser PR, Takashima A. Reciprocal cytokine-mediated cellular interactions in mouse epidermis: Promotion of gamma delta T-cell growth by IL-7 and TNF alpha and inhibition of keratinocyte growth by gamma IFN. J Invest Dermatol 101: 543–548, 1993.

    PubMed  CAS  Google Scholar 

  131. Dalloul A, Laroche L, Bagot M, Mossalayi MD, Fourcade C, Thacker DJ, Hogge DE, Merle Beral H, Debre P, Schmitt, C. Interleukin-7 is a growth factor for Sezary lymphoma cells. J Clin Invest 90:1054–1060, 1992.

    PubMed  CAS  Google Scholar 

  132. Grabstein KH, Waldschmidt TJ, Finkelman FD, Hess BW, Alpert AR, Boiani NE, Namen AE, Morrissey PJ. Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J Exp Med 178:257–264, 1993.

    PubMed  CAS  Google Scholar 

  133. Touw IP, Pouwels K, van Agthoven AJ, van Gurp R, Deiwel R, Hagemeijer A, Hahlen K, Lowenberg B. Role of interleukin-7 in the growth of acute lymphoblastic leukemia. Bone Marrow Transplant 6 (Supp ll):36–38, 1990.

    PubMed  Google Scholar 

  134. Eder M, Ottmann OG, Hansen Hagge TE, Bartram CR, Gillis S, Hoelzer D, Ganser A. Effects of recombinant human IL-7 on blast cell proliferation in acute lymphoblastic leukemia. Leukemia 4:533–540, 1990.

    PubMed  CAS  Google Scholar 

  135. Eder M, Ottmann OG, Hansen Hagge TE, Bartram CR, Falk S, Gillis S, Hoelzer D, Ganser A. In vitro culture of common acute lymphoblastic leukemia blasts: Effects of interleukin-3, interleukin-7, and accessory cells. Blood 79:3274–3284, 1992.

    CAS  Google Scholar 

  136. Skjonsberg C, Erikstein BK, Smeland EB, Lie SO, Funderud S, Beiske K, Blomhoff HK. Interleukin-7 differentiates a subgroup of acute lymphoblastic leukemias. Blood 77: 2445–2450, 1991.

    PubMed  CAS  Google Scholar 

  137. Pandrau-Garcia D, de Saint-Vis B, Saeland S, Renard N, Ho S, Moreau I, Banchereau J, Galizzi J. Growth inhibitory and agonistic signals of interleukin-7 (IL-7) can be mediated through the CDwl27 IL-7 receptor. Blood 83 N012:3613–3619, 1994.

    PubMed  CAS  Google Scholar 

  138. Lynch DH, Namen AE, Miller RE. In vivo evaluation of the effects of interleukins 2, 4 and 7 on enhancing the immunotherapeutic efficacy of anti-tumor cytotoxic T lymphocytes. Eur J Immunol 21:2977–2985, 1991.

    PubMed  CAS  Google Scholar 

  139. Lynch DH, Miller RE. Interleukin 7 promotes long-term in vitro growth of antitumor cytotoxic T lymphocytes with immunotherapeutic efficacy in vivo. J Exp Med 179:31–42, 1994.

    PubMed  CAS  Google Scholar 

  140. Jicha DL, Mule JJ, Rosenberg SA. Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med 174:1511–1515, 1991.

    PubMed  CAS  Google Scholar 

  141. Murphy WJ, Back TC, Conlon KC, Komschlies KL, Ortaldo JR, Sayers TJ, Wiltrout RH, Longo DL. Antitumor effects of interleukin-7 and adoptive immunotherapy on human colon carcinoma xenografts. J Clin Invest 92:1918–1924, 1993.

    PubMed  CAS  Google Scholar 

  142. Komschlies KL, Gregorio TA, Gruys ME, Back TC, Faltynek CR, Wiltrout RH. Administration of recombinant human IL-7 to mice alters the composition of B-lineage cells and T cell subsets, enhances T cell function, and induces regression of establihsed metastases. J Immunol 152:5776–5784, 1994.

    PubMed  CAS  Google Scholar 

  143. Talmadge JE, Jackson JD, Kelsey L, Borgeson CD, Faltynek C, Perry GA. T-cell reconstitution by molecular, phenotypic, and functional analysis in the thymus, bone marrow, spleen, and blood following split-dose polychemotherapy and therapeutic activity for metastatic breast cancer in mice. J Immunother 14:258–268, 1993.

    CAS  Google Scholar 

  144. Wu B, Shen RN, Wang WX, Broxmeyer HE, Lu L. Antitumor effect of interleukin 7 in combination with local hyperthermia in mice bearing B16a melanoma cells. Stem Cells 11:412–421, 1993.

    PubMed  CAS  Google Scholar 

  145. Hock H, Dorsch M, Diamantstein T, Blankenstein T. Interleukin 7 induces CD4+ T cell-dependent tumor rejection. J Exp Med 174:1291–1298, 1991.

    PubMed  CAS  Google Scholar 

  146. Aoki T, Tashiro K, Miyatake S, Kinashi T, Nakano T, Oda Y, Kikuchi H, Honjo T. Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity in vivo. Proc Natl Acad Sci USA 89:3850–3854, 1992.

    PubMed  CAS  Google Scholar 

  147. McBride WH, Thacker JD, Comora S, Economou JS, Kelley D, Hogge D, Dubinett SM, Dougherty GJ. Genetic modification of a murine fibrosarcoma to produce interleukin 7 stimulates host cell infiltration and tumor immunity. Cancer Res 52:3931–3937, 1992.

    PubMed  CAS  Google Scholar 

  148. Miller AR, McBride WH, Dubinett SM, Dougherty GJ, Thacker JD, Shau H, Kohn DB, Moen RC, Walker MJ, Chiu R, et al. Transduction of human melanoma cell lines with the human interleukin-7 gene using retroviral-mediated gene transfer: Comparison of immunologic properties with interleukin-2. Blood 82:3686–3694, 1993.

    PubMed  CAS  Google Scholar 

  149. Hock H, Dorsch M, Kunzendorf U, Qin Z, Diamantstein T, Blankenstein T. Mechanisms of rejection induced by tumor cell-targeted gene transfer of interleukin 2, interleukin 4, interleukin 7, tumor necrosis factor, or interferon gamma. Proc Natl Acad Sei USA 90:2774–2778, 1993.

    CAS  Google Scholar 

  150. Hock H, Dorsch M, Kunzendorf U, Uberla K, Qin Z, Diamantstein T, Blankenstein T. Vaccinations with tumor cells genetically engineered to produce different cytokines: Effec-tivity not superior to a classical adjuvant. Cancer Res 53:714–716, 1993.

    CAS  Google Scholar 

  151. Lu L, Zhou Z, Wu B, Xiao M, Shen RN, Williams DE, Kim YJ, Kwon BS, Ruscetti S, Broxmeyer HE. Influence of recombinant human interleukin (IL)-7 on disease progression in mice infected with Friend virus complex. Int J Cancer 52:261–265, 1992.

    PubMed  CAS  Google Scholar 

  152. Bui T, Faltynek CR, Ho RJY. Biological response of recombinant interleukin-7 on herpes-simplex-virus infection in guinea-pigs. Vaccine 12(7):646–652, 1994 (abstract).

    PubMed  CAS  Google Scholar 

  153. Witte PL, Frantsve LM, Hergott M, Rahbe SM. Cytokine production and heterogeneity of primary stromal cells that support B lymphopoiesis. Eur J Immunol 23:1809–1817, 1993.

    PubMed  CAS  Google Scholar 

  154. Sakata T, Iwagami S, Tsuruta Y, Teraoka H, Tatsumi Y, Kita Y, Nishikawa S, Takai Y, Fujiwara H. Constitutive expression of interleukin-7 mRNA and production of IL-7 by a cloned murine thymic stromal cell line. J Leukoc Biol 48:205–212, 1990.

    PubMed  CAS  Google Scholar 

  155. Gutierrez JC, Palacios R. Heterogeneity of thymic epithelial cells in promoting T-. lymphocyte differentiation in vivo. Proc Natl Acad Sci USA 88:642–646, 1991.

    PubMed  CAS  Google Scholar 

  156. Heufler C, Topar G, Grasseger A, Stanzl U, Koch F, Romani N, Namen AE, Schuler G. Interleukin 7 is produced by murine and human keratinocytes. J Exp Med 178:1109–1114, 1993.

    PubMed  CAS  Google Scholar 

  157. Appasamy, P.M. (unpublished).

    Google Scholar 

  158. Frishman J, Long B, Knospe W, Gregory S, Plate J. Genes for interleukin 7 are transcribed in leukemic cell subsets of individuals with chronic lymphocytic leukemia. J Exp Med 177:955–964, 1993.

    PubMed  CAS  Google Scholar 

  159. Kaashoek JGJ, Mout R, Falkenburg JHF, Willemze R, Fibbe WE, Landegent JE. Cytokine production by the bladder carcinoma cell line 5637: Rapid analysis of mRNA expression levels using a cDNA-PCR procedure. Lymphokine Cytokine Res 10:231, 1991.

    PubMed  CAS  Google Scholar 

  160. Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G, Herlyn M. Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer 56:853–857, 1994.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Appasamy, P.M. (1995). Interleukin-7 and lymphopoiesis: Biological and clinical implications. In: Kurzrock, R., Talpaz, M. (eds) Cytokines: Interleukins and Their Receptors. Cancer Treatment and Research, vol 80. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1241-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1241-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8528-1

  • Online ISBN: 978-1-4613-1241-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics