Skip to main content

Interleukin-2: Its rationale and role in the treatment of patients with cancer

  • Chapter
Cytokines: Interleukins and Their Receptors

Part of the book series: Cancer Treatment and Research ((CTAR,volume 80))

Abstract

In 1976, Morgan, Ruscetti, and Gallo described a factor produced by PHA-stimulated lymphocytes that supported the long-term growth and expansion of bone marrow-derived cell suspensions [1]. They further characterized the cells proliferating in response to this growth factor as T cells [2]. Helper and cytotoxic T cells expanded in this T-cell growth factor maintained their in vitro and in vivo activity [3–6]. The gene for this T-cell growth factor was subsequently cloned and expressed in Escherichia coli, providing an abundant supply of what we now call interleukin-2 (IL-2) [7,8]. As a result of its manifold immunomodulatory effects, IL-2 has become the cornerstone of many immunotherapy efforts. This review will focus on the basic biology of IL-2, its pharmacologic properties, and its role as an anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007–1008, 1976.

    Article  PubMed  CAS  Google Scholar 

  2. Ruscetti FW, Morgan DA, Gallo RC. Functional and morphologic characterization of human T cells continuously grown in vitro. J Immunol 119:131–138, 1977.

    PubMed  CAS  Google Scholar 

  3. Gills S, Smith KA. Long term culture of tumour-specific cytotoxic T cells. Nature 268:154–156, 1977.

    Article  Google Scholar 

  4. Strausser JL, Rosenberg SA. In vitro growth of cytotoxic human lymphocytes. J Immunol 121:1491–1495, 1978.

    PubMed  CAS  Google Scholar 

  5. Rosenberg SA, Schwarz S, Spiess PJ. In vitro growth of murine T cells: II. Growth of in vitro sensitized cells cytotoxic for allo-antigens. J Immunol 121:1951–1955, 1978.

    PubMed  CAS  Google Scholar 

  6. Tees R, Schreier MH. Selective reconstitution of nude mice with long-term cultured and cloned specific helper T cells. Nature 283:780–781, 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Taniguchi T, Matsui H, Fujita T, et al. Structure and expression of a cloned CDNA for human interleukin-2. Nature 302:305–310, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Devos R, Plaetinck G, Cheroutre H, et al. Molecular cloning of human interleukin-2 CDNA and its expression in E. coli. Nucleic Acids Res 11:4307–4323, 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Kaplan DR, Bergmann CA, Gould D, et al. Membrane-associated interleukin-2 epitopes on the surface of human T lymphocytes. J Immunol 140:819–826, 1988.

    PubMed  CAS  Google Scholar 

  10. Sherblom AP, Sathyamoorthy N, Decker JM, et al. IL-2, a lectin with specificity for high mannose glycopeptides. J Immunol 143:939–944, 1989.

    PubMed  CAS  Google Scholar 

  11. Brandhuber BJ, Boone T, Kenney WC, et al. Three-dimensional structure of interleukin 2. Science 238:1707–1709, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Bazan JF. Unraveling the structure of IL-2. Science 257:410–412, 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Sauve’ GJK, Bailon P, Tsien WH, et al. Structure activity relationship of human IL-2: identification of residues that bind the IL-2 receptor. In: RC Rees, ed. The Biology and Clinical Applications of Interleukin-2. Oxford: IRL Press, 1990, pp 7–14.

    Google Scholar 

  14. Bailon P, Weber DV. Receptor-affinity chromatography. Nature 335:839–840, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. McGuire KL, Yang JA, Rothenberg EV. Influence of activating stimulus on functional phenotype: Interleukin-2 MRNA accumulation differentially induced by ionophore and receptor ligands in subsets of murine T cells. Proc Natl and Sci USA 85:6503–6507, 1988.

    Article  CAS  Google Scholar 

  16. Taira S, Matsui M, Hayakawa K, et al. Interleukin-2 secretion by B-cell lines and splenic B cells stimulated with calcium ionophore and phorbol ester. J Immunol 139:2957–2964, 1987.

    PubMed  CAS  Google Scholar 

  17. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell 76:241–251, 1994.

    Article  PubMed  CAS  Google Scholar 

  18. O’Shea JJ, Harford JB, Klausner RD. Identification and characterization of the phospha-tidylinositol kinase in membranes of murine T lymphocytes. J Immunol 137:971–976, 1986.

    PubMed  Google Scholar 

  19. Imboden JB, Stobo JD. Transmembrane signalling by the T-cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores. J Exp Med 161:446–456, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Sussman JJ, Mer’cep M, Saito T, et al. Dissociation of phosphoinositide hydrolysis and calcium fluxes from the biological responses of a T-cell hybridoma. Nature 334:625–628, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Goldsmith MA, Weiss A. Early signal transduction by the antigen receptor without commitment to T-cell activation. Science 240:1029–1031, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Seder RA, Germain RN, Linsley PS, Paul WE. CD28-mediated costimulation of inter-leukin-2 production plays a critical role in T-cell priming for IL-4 and interferon-γ production. J Exp Med 179:299–304, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Linsley PS, Clark EA, Ledbetter JA. T-cell antigen CD28 mediates adhesion with B cell by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci USA 87:5031–5035, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Azuma M, Ito D, Yagita H, et al. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366:76–79, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Boussiotis VA, Freeman GJ, Gribben JG, et al. Activated human B lymphocytes express 3 CTLA-4 counter receptors that costimulate T-cell activation. Proc Natl Acad Sci USA 90:11059–11063, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Lenschow DJ, Huei-Ting S, Zuckerman G, et al. Expression and functional significance of an additional ligand for CTLA-4. Proc Natl Acad Sci USA 90:11054–11058, 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Freeman GJ, Bordello F, Hodes RJ, et al. Murine B7–2, an alternative CTLA-4 counter receptor that costimulates T-cell prliferation and interleukin-2 production. J Exp Med ●●:2185–2192, 1993.

    Google Scholar 

  28. Fraser JD, Irving BA, Crabtree GR, et al. Regulation of interleukin-2 gene enhancer activity by the T-cell accessory molecule CD28. Science 251:313–316, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Lindsten T, June CH, Ledbetter A, et al. Regulation of lymphokine messenger RNA stability by a surface-mediated T-cell activation pathway. Science 244:339–343, 1989.

    Article  CAS  Google Scholar 

  30. June CH, Ledbetter JA, Lindsten T, et al. Evidence for the involvement of three distinct signals in the induction of IL-2 gene expression in human T lymphocytes. J Immunol 143:153–161, 1989.

    PubMed  CAS  Google Scholar 

  31. Janeway C. Immunogenicity signals 1, 2, 3,... and 0. Immunol Today 10:283–286, 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Weaver CT, Unanue ER. The costimulatory function of antigen presenting cells. Immunol Today 11:49–55, 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Sprent J, Schaefer M. Antigen presenting cells for unprimed T cells. Immunol Today 10:17–23, 1989.

    Article  PubMed  CAS  Google Scholar 

  34. Mizel SB. Interleukin-1 and T-cell activation. Immunol Today 8:330–332, 1987.

    Article  CAS  Google Scholar 

  35. Chu ET, Lareau M, Rosenwasser LJ, et al. Antigen presentation by EBV-B cells to resting and activated T cells: Role of interleukin-1. J Immunol 134:1676–1681, 1985.

    PubMed  CAS  Google Scholar 

  36. Ceuppens JL, Baroja ML, Lorré K, et al. Human T-cell activation with phytohemag-glutinin. J Immunol 141:3868–3874, 1988.

    PubMed  CAS  Google Scholar 

  37. Lorré K, Damme JV, Verwilghen J, et al. IL-6 is an accessory signal in the alternative CD2-mediated pathway of T-cell activation. J Immunol 144:4681–4687, 1990.

    PubMed  Google Scholar 

  38. Van Seventer GA, Shimizu Y, Horgan KJ, et al. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T-cell receptor-mediated activation of resting T cells. J Immunol 144:4579–4586, 1990.

    PubMed  Google Scholar 

  39. Figdor CG, Kooyk YV, Keizer GD. On the mode of action of LFA-1. Immunol Today 11:277–280, 1990.

    Article  PubMed  CAS  Google Scholar 

  40. Makgoba MW, Sanders ME, Shaw S. The CD2-LFA3 and LFA1-ICAM pathways: relevance to T-cell recognition. Immunol Today 10:417–422, 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Shows T, Eddy R, Haley L, et al. Interleukin-2 is assigned to human chromosome 4. Somatic Cell Mol Genet 10:315–318, 1984.

    Article  CAS  Google Scholar 

  42. Williams TM, Eisenberg L, Burlein JE, et al. Two regions within the human IL-2 gene promoter are important for inducible IL-2 expression. J Immunol 141:662–666, 1988.

    PubMed  CAS  Google Scholar 

  43. Taniguchi T. Regulation of cytokine gene expression. Annu Rev Immunol 6:439–464, 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Crabtree GR. Contingent genetic regulatory events in T-lymphocyte activation. Science 243:355–361, 1989.

    Article  PubMed  CAS  Google Scholar 

  45. Durand DB, Shaw JP, Bush MR, et al. Characterization of antigen receptor response elements within the interleukin-2 enhancer. Mol Cell Biol 8:1715–1724, 1988.

    PubMed  CAS  Google Scholar 

  46. Shaw JP, Utz PJ, Durand DB, et al. Identification of a putative regulator of early T-cell activation genes. Science 241:202–205, 1988.

    Article  PubMed  CAS  Google Scholar 

  47. Serfling E, Barthelmäs R, Pfeuffer I, et al. Ubiquitous and lymphocyte-specific factors are involved in the induction of the mouse interleukin-2 gene in T lymphocytes. EMBO J 8:465–473, 1989.

    PubMed  CAS  Google Scholar 

  48. Lenardo MJ, Baltimore D. NF-κB: A pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:228–229, 1989.

    Article  Google Scholar 

  49. Schwartz RH. A cell culture model for T-lymphocyte clonal anergy. Science 248:1349–1356, 1990.

    Article  PubMed  CAS  Google Scholar 

  50. Gimmi CD, Freeman GJ, Gribben JG, et al. Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc Natl Acad Sci USA 90: 6586–6590, 1993.

    Article  PubMed  CAS  Google Scholar 

  51. Licinio J, Wong ML, Altemus M, et al. Twenty-four hour concentrations of interleukin-2 in healthy women exhibit episodic fluctuations: Analysis of integrated basal levels and discrete pulse properties (in press).

    Google Scholar 

  52. Gallo P, Piccinno M, Pagni S, et al. Interleukin-2 levels in serum and cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 24:795–797, 1988.

    Article  PubMed  CAS  Google Scholar 

  53. Trotter JL, Clifford DB, Anderson CB, et al. Elevated serum interleukin-2 levels in chronic progressive multiple sclerosis. N Engl J Med 318:1206–●●, 1988.

    PubMed  CAS  Google Scholar 

  54. Pinkston I, Saltini C, Muller ●, et al. Corticosteroid therapy suppresses spontaneous interleukin-2 release and spontaneous proliferation of lung T lymphocytes of patients with active pulmonary sarcoidosis. J Immunol 139:755–760, 1987.

    PubMed  CAS  Google Scholar 

  55. Kahaleh MB, LeRoy EC. Interleukin-2 in scleroderma: Correlation of serum level with extent of skin involvement and disease duration. Ann Intern Med 110:446–450, 1989.

    PubMed  CAS  Google Scholar 

  56. Jordan SC, Marchevski A, Ross D, et al. Serum interleukin-2 levels in lung transplant recipients: Correlation with findings on transbronchial biopsy. J Heart Lung Transplant 11:1001–1004, 1992.

    PubMed  CAS  Google Scholar 

  57. McFarlane CG, Meikle MC. Interleukin-2, interleukin-2 receptor and interleukin-4 levels are elevated in the sera of patients with periodontal disease. J Periodontal Res 26: 402–408, 1991.

    Article  PubMed  CAS  Google Scholar 

  58. Gallo P, Piccinno G, Tavolato B, Siden A. A longitudinal study on IL-2, sIL-2R, IL-4 and IFN-γ in multiple sclerosis CSF and serum. J Neurol Sci 101:227–232, 1991.

    Article  PubMed  CAS  Google Scholar 

  59. Freedman MS, Muth KL, Trotter JL, et al. Prospective serial analysis of interleukin-2 and soluble interleukin-2 receptor in relapsing-remitting multiple sclerosis. Neurology 42: 1596–1601, 1992.

    PubMed  CAS  Google Scholar 

  60. Miller LC, Kaplan MM. Serum interleukin-2 and tumor necrosis factor-alpha in primary biliary cirrhosis: Decrease by colchicine and relationship to HLA-DR4. Am J Gastroenterol 987:465–470, 1992.

    Google Scholar 

  61. Altomonte L, Zoli A, Mirone L, et al. Serum levels of interleukin 1β, tumour necrosis factor-α and interleukin-2 in rheumatoid arthritis: Correlation with disease activity. Clin Rheumatol 11:202–205, 1992.

    CAS  Google Scholar 

  62. Espersen GT, Vestergaard M, Ernst E, Grunnet N. Tumour necrosis factor alpha and interleukin-2 in plasma from rheumatoid arthritis patients in relation to disease activity. Clin Rheumatol 10:374–376, 1991.

    Article  PubMed  CAS  Google Scholar 

  63. Hession C, Decker JM, Sherblom AP, et al. Uromodulin (Tamm-Horsfall glycoprotein): A renal ligand for lymphokines. Science 237:1479–1484, 1987.

    Article  PubMed  CAS  Google Scholar 

  64. Lotze MT, Frana LW, Sharrow SO, et al. In vivo administration of purified human interleukin 2: I. Half-life and immunologic effects of the Jurkat cell-line derived interleukin 2. J Immunol 134:157–166, 1985.

    PubMed  CAS  Google Scholar 

  65. Wang H-M, Smith KA. The interleukin 2 receptor. Functional consequences of its bimo-lecular structure. J Exp Med 166:1055–1069, 1987.

    Article  PubMed  CAS  Google Scholar 

  66. Nikaido T, Shimizu A, Ishida N, et al. Molecular cloning of cDNA encoding human interleukin-2 receptor. Nature 311:631–635, 1984.

    Article  PubMed  CAS  Google Scholar 

  67. Leonard WJ, Depper JM, Kronke M, et al. The human receptor for T-cell growth factor. J Biol Chem 260:1872–1880, 1985.

    PubMed  CAS  Google Scholar 

  68. Greene WC, Robb RJ, Svetlik PB, et al. Stable expression of cDNA encoding the human interleukin-2 receptor in eukaryotic cells. J Exp Med 162:363–368, 1985.

    Article  PubMed  CAS  Google Scholar 

  69. Reem GH, Yeh N-H. Interleukin-2 regulates expression of its receptor and synthesis of gamma interferon by human T lymphocytes. Science 225:429–430, 1984.

    Article  PubMed  CAS  Google Scholar 

  70. Waldmann TA, Goldman CK, Robb RJ, et al. Expression of interleukin-2 receptors on activated human B cells. J Exp Med 160:1450–1466, 1984.

    Article  PubMed  CAS  Google Scholar 

  71. Holter W, Grunow R, Stockinger H, et al. Recombinant interferon-gamma induces interleukin-2 receptors on human peripheral blood monocytes. J Immunol 136:2171–2175, 1986.

    PubMed  CAS  Google Scholar 

  72. Holter W, Goldman CK, Casabo L, et al. Expression of functional IL-2 receptors by lipopolysaccharide and interferon-gamma stimulated human monocytes. J Immunol 138: 2917–2922, 1987.

    PubMed  CAS  Google Scholar 

  73. Hoyos B, Ballard DW, Böhnlein E, et al. Kappa-B-specific DNA-binding proteins: role in the regulation of human interleukin-2 gene expression. Science 244:457–460, 1989.

    Article  PubMed  CAS  Google Scholar 

  74. Scholz W, Altman A. Synergistic induction of interleukin-2 receptor (Tac) expression on YT cells by interleukin 1 or tumor necrosis factor a in combination with CAMP-inducing agents. Cell Signaling 1:367–375, 1989.

    Article  CAS  Google Scholar 

  75. Granelli-Piperno A, Andrus L, Steinman RM. Lymphokine and non-lymphokine MRNA levels in stimulated human T cells. Kinetics, mitogen requirements, and effects of cyclosporin A. J Exp Med 163:922–937, 1986.

    CAS  Google Scholar 

  76. Isakov N, Altman A. Tumor promoters in conjunction with calcium ionophores mimic antigenic stimulation by reactivation of alloantigen-primed murine T lymphocytes. J Immunol 135:3674–3680, 1985.

    PubMed  CAS  Google Scholar 

  77. Kuziel WA, Greene WC. Interleukin-2 and the IL-2 receptor: New insights into structure and function. J Invest Dermatol 94:27S-32S, 1990.

    Article  PubMed  CAS  Google Scholar 

  78. Lowenthal JW, Greene WC. Contrasting IL-2 binding properties of the a (p55) and β (p70) protein subunits of the human high-affinity IL-2 receptor. J Exp Med 166:1156–1161, 1987.

    Article  PubMed  CAS  Google Scholar 

  79. Smith KA. Interleukin-2: Inception, impact, and implications. Science 240:1169–1176, 1988.

    Article  PubMed  CAS  Google Scholar 

  80. Saragovi M, Malek TR. Evidence for additional subunits associated to the mouse interleukin-2 receptor p55/p75 complex. Proc Natl Acad Sci USA 87:11–15, 1990.

    Article  PubMed  CAS  Google Scholar 

  81. Kamio K, Uchiyama T, Arima N, et al. Role of alpha chain-IL-2 complex in the formation of the ternary complex of IL-2 and high-affinity IL-2 receptor. Int Immunol 2:521–530, 1990.

    Article  PubMed  CAS  Google Scholar 

  82. Espinoza-Delgado I, Ortaldo JR, Winkler-Pickett W, et al. Expression and role of p75 interleukin-2 receptor on human monocytes. J Exp Med 171:1821–1826, 1990.

    Article  PubMed  CAS  Google Scholar 

  83. Nishi M, Ishida Y, Honjo T. Expression of functional interleukin-2 receptors in human light chain/Tac transgenic mice. Nature 331:267–269, 1988.

    Article  PubMed  CAS  Google Scholar 

  84. Yagita H, Nakata M, Azuma A, et al. Activation of peripheral blood T cells via the p75 interleukin-2 receptor. J Exp Med 170:1445–1450, 1989.

    Article  PubMed  CAS  Google Scholar 

  85. Siegel JP, Sharon M, Smith PL, et al. The IL-2 receptor β chain: Role in mediating signals for LAK, NK, and proliferative activities. Science 238:75–78, 1987.

    Article  PubMed  CAS  Google Scholar 

  86. D’Andrea AD, Fasman GD, Lodish HF. Erythropoietin receptor and IL-2 receptor β chain: a new receptor family. Cell 58:1023–1024, 1989.

    Article  PubMed  Google Scholar 

  87. Mosley B, Beckmann MP, March CJ, et al. The murine IL-4 receptor: Molecular cloning and characterization of secreted and membrane-bound forms. Cell 59:335–348, 1989.

    Article  PubMed  CAS  Google Scholar 

  88. Yamasaki K, Taga T, Hirata Y, et al. Cloning and expression of the human interleukin-6(BSF-2/IFNβ 2) receptor. Science 241:825–828, 1988.

    Article  PubMed  CAS  Google Scholar 

  89. Ito N, Yonehara S, Schreurs J, et al. Cloning of an IL-3 receptor gene: A member of a distinct receptor gene family. Science 247:324–327, 1990.

    Article  Google Scholar 

  90. Gearing DP, King JA, Gough NM, et al. Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J 8:3667–3676, 1989.

    PubMed  CAS  Google Scholar 

  91. Hatakeyama M, Mori H, Doi T, et al. A restricted cytoplasmic region of IL-2 receptor β chain is essential for growth signal transduction but not for ligand binding and internalization. Cell 59:837–845, 1989.

    Article  PubMed  CAS  Google Scholar 

  92. Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 18:6934–6938, 1990.

    Article  Google Scholar 

  93. Cosman D, Lyman SD, Idzerda RL, et al. A new cytokine receptor superfamily. Trends Biochem Sci 15:265–270, 1990.

    Article  PubMed  CAS  Google Scholar 

  94. Caliguiri MA, Zmudzinas A, Maneley TJ, et al. Functional consequences of interleukin-2 receptor expression on resting human lymphocytes: Identification of a novel natural killer cell subset with high-affinity receptors. J Exp Med 171:1509–1526, 1990.

    Article  Google Scholar 

  95. Zubler RH, Lowenthal JW, Erard F, et al. Activated B cells express receptors for, and proliferate in response to, pure interleukin-2. J Exp Med 160:1170–1183, 1984.

    Article  PubMed  CAS  Google Scholar 

  96. Benveniste EN, Merrill JE. Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature 321:610–613, 1986.

    Article  PubMed  CAS  Google Scholar 

  97. Malkovsky M, Loveland B, North M, et al. Recombinat interleukin-2 directly augments the cytotoxicity of human monocytes. Nature 325:262–265, 1987.

    Article  PubMed  CAS  Google Scholar 

  98. Steiner G, Tschachler E, Tani M, et al. Interleukin-2 receptors on cultured murine epidermal Langerhans cells. J Immunol 137:155–159, 1986.

    PubMed  CAS  Google Scholar 

  99. Takeshita T, Asao H, Ohtani K, et al. Cloning of the y chain of the human IL-2 receptor. Science 257:379–382, 1992.

    Article  PubMed  CAS  Google Scholar 

  100. Noguchi M, Adelstein S, Cao X, Leonard WJ. Characterization of the human interleukin-2 receptor gamma chain gene. J Biol Chem 268:13601–13608, 1993.

    PubMed  CAS  Google Scholar 

  101. Puck JM, Deschenes SM, Porter JC, et al. The interleukin-2 receptor gamma chain maps to Xql3.1 and is mutated in X-linked severe combined immunodeficiency, SC1DX1. Hum Molec Genet 2:1099–1104, 1993.

    Article  PubMed  CAS  Google Scholar 

  102. Nakamura Y, Russell SM, Mess SA, et al. Heterodimerization of the IL-2 receptor beta-and gamma-chain cytoplasmic domains is required for signalling. Nature 369:330–333, 1994.

    Article  PubMed  CAS  Google Scholar 

  103. Nelson BH, Lord JD, Greenberg PD, et al. Cytoplasmic domains of the interleukin-2 receptor beta and gamma chains mediate the signal for T-cell proliferation. Nature 369:333–336, 1994.

    Article  PubMed  CAS  Google Scholar 

  104. Smith KA, Cantrell DA. Interleukin 2 regulates its own receptors. Proc Natl Acad Sci USA 82:864–868, 1985.

    Article  PubMed  CAS  Google Scholar 

  105. Smith KA. The interleukin 2 receptor. In: FJ Dixon, ed. Adv Immunol, Vol 42. San Diego: Academic Press, 1988, pp 165–179.

    Google Scholar 

  106. Mills G, Stewart DJ, Mellors A, et al. Interleukin-2 does not induce phosphatidylinositol hydrolysis in activated T cells. J Immunol 136:3019–3024, 1986.

    PubMed  CAS  Google Scholar 

  107. Mills GB, Girard P, Grinstein S, et al. Interleukin-2 induced proliferation of T lymphocyte mutants lacking protein kinase C. Cell 55:91–100, 1988.

    Article  PubMed  CAS  Google Scholar 

  108. Tigges MA, Casey LS, Koshland ME. Mechanisms of interleukin-2 signaling: Mediation of different outcomes by a single receptor and transduction pathway. Science 243: 781–786, 1989.

    Article  PubMed  CAS  Google Scholar 

  109. Stern JB, Smith KA. Interleukin-2 induction of T-cell G1 progression and c-myb expression. Science 233:203–206, 1986.

    Article  PubMed  CAS  Google Scholar 

  110. Mills GB, May G. Binding of interleukin-2 to its 75kDa intermediate affinity receptor is sufficient to activate Na/H+ exchange. J Immunol 139:4083–4087, 1987.

    PubMed  CAS  Google Scholar 

  111. Ferris DK, Willette-Brown J, Ortaldon JR, et al. IL-2 regulation of tyrosine kinase activity is mediated through the p70–75-subunit of the IL-2 receptor. J Immunol 143: 870–876, 1989.

    PubMed  CAS  Google Scholar 

  112. Manyak CL, Norton GP, Lobe CG, et al. IL-2 induces expression of serine protease enzymes and genes in natural killer and nonspecific T killer cells. J Immunol 142:3707–3713, 1989.

    PubMed  CAS  Google Scholar 

  113. Clevenger CV, Altmann SW, Prystowsky MB. Requirement of nuclear prolactin or interleukin-2 stimulated proliferation of T lymphocytes. Science 253:77–79, 1991.

    Article  PubMed  CAS  Google Scholar 

  114. Odum N, Kanner SB, Ledbetter JA, Svejgaard A. MHC class II molecules deliver costimulatory signals in human T cells through a functional linkage with IL-2-receptors. J Immunol 150:5289–5298, 1993.

    PubMed  CAS  Google Scholar 

  115. Akbar AN, Borthwick N, Salmon M, et al. The significance of low bcl-2 expression by CD45RO T cells in normal individuals and patients with acute viral infection. The role of apoptosis in T cell memory. J Exp Med 178:427–438, 1993.

    Article  PubMed  CAS  Google Scholar 

  116. Trinchieri G, Matsumoto-Kobayashi M, Clark SC, et al. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med 160:1147–1159, 1984.

    Article  PubMed  CAS  Google Scholar 

  117. Siegel JP, Sharon M, Smith PL, et al. The IL-2 receptor beta chain (p70): Role in mediating signals for LAK, NK, and proliferative activities. Science 238:75–78, 1987.

    Article  PubMed  CAS  Google Scholar 

  118. Kawakami Y, Custer MC, Rosenberg SA, et al. IL-4 regulates IL-2 induction of lymphokine-activated killer activity from human lymphocytes. J Immunol 142:3452–2461, 1989.

    PubMed  CAS  Google Scholar 

  119. Stötter H, Custer MC, Bolton ES, et al. Interleukin-7 induces human lymphokine activated killer (LAK) cells and is regulated by interleukin-4. J Immunol 146:150–144, 1991.

    PubMed  Google Scholar 

  120. Berman RM, Zeh JH, Storkus WJ, Lotze MT. Interleukin-10 induces lymphokine activated killer (LAK) cell activity. J Immunother 13:56, 1992.

    Article  Google Scholar 

  121. Nastala CL, Edington HD, Storkus WJ, Lotze MT. Recombinant interleukin-12 (r-mlL-12) mediates regression of both subcutaneous and metastatic murine tumors. Surg Forum 44:518–521, 1993.

    Google Scholar 

  122. Nastala CL, Edington H, Storkus W, et al. Recombinant interleukin-12 induces tumor regression in murine models: Interferon-gamma but not nitric oxide dependent effects. J Immunol, 1994 (in press).

    Google Scholar 

  123. Thomson AW, Lotze MT. Interleukins 13–15. In AW Thompson, ed. The Cytokine Handbook, 2nd ed. Academic Press, 1994.

    Google Scholar 

  124. Nakanishi K, Malek TP, Smith KA, et al. Both interleukin 2 and a second T-cell derived factor in EL-4 supernatant have activity as differentiation factors in IgM synthesis. J Exp Med 160:1605–1621, 1984.

    Article  PubMed  CAS  Google Scholar 

  125. Harada M, Mori K, Nishimoto H. Suppressive and augmentative effects of recombinant human interleukin 2 upon delayed type of hypersensitivity in the mouse. Inflammation 10:167–174, 1986.

    Article  PubMed  CAS  Google Scholar 

  126. Jablons D, Bolton E, Mertins S, et al. IL-2 based immunotherapy alters circulating neutrophil Fc receptor expression and Chemotaxis. J Immunol 144:3630–3636, 1990.

    PubMed  CAS  Google Scholar 

  127. Rosenberg SA, Spiess PJ, Schwarz S. In vivo administration of IL-2 enhances specific alloimmune responses. Transplantation 35:631–634, 1983.

    Article  PubMed  CAS  Google Scholar 

  128. Clason AE, Duarte AJS, Kupiec-Weglinski JW, et al. Restoration of allograft responsiveness in B rats by IL-2 and/or adherent cells. J Immunol 129:252–260, 1982.

    PubMed  CAS  Google Scholar 

  129. Rouse BT, Miller LS, Turtinen L, et al. Augmentation of immunity to herpes simplex virus by in vivo administration of interleukin 2. J Immunol 134:926–930, 1985.

    PubMed  CAS  Google Scholar 

  130. Rosenberg SA, Mulé JJ, Spiess PJ, et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose, recombinant interleukin 2. J Exp Med 161:1169–1188, 1985.

    Article  PubMed  CAS  Google Scholar 

  131. Lotze MT, Matory YL, Ettinghausen SE, et al. In vivo administration of purified human IL-2: II. Half-life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL-2. J Immunol 135:2865–2875, 1985.

    PubMed  CAS  Google Scholar 

  132. Lotze MT, Custer MC, Sharrow SO, et al. In vivo administration of purified human interleukin-2 to patients with cancer: development of interleukin-2 receptor positive cells and circulating soluble interleukin-2 receptors following interleukin-2 administration. Cancer Res 47:2188–2195, 1987.

    PubMed  CAS  Google Scholar 

  133. Schorle H, Holtschke T, Hunig T, et al. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 522:621–624, 1991.

    Article  Google Scholar 

  134. Sadlack B, Merz H, Schorle H, et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–261, 1993.

    Article  PubMed  CAS  Google Scholar 

  135. Minasi LE, Kamogawa Y, Carding S, et al. The selective ablation of interleukin-2 producing cells isolated from transgenic mice. J Exp Med 177:1451–1459, 1993.

    Article  PubMed  CAS  Google Scholar 

  136. Heslop HE, Gottlieb DJ, Bianchi ACM, et al. In vivo induction of gamma interferon and tumor necrosis factor by interleukin-2 infusion following intensive chemotherapy or autologous marrow transplantation. Blood 74:1374–1380, 1989.

    PubMed  CAS  Google Scholar 

  137. Kasid A, Director EP, Rosenberg SA. Induction of endogenous cytokine MRNA in circulating peripheral blood mononuclear cells by IL-2 administration to cancer patients. J Immunol 143:736–739, 1989.

    PubMed  CAS  Google Scholar 

  138. Rosenstein M, Ettinghausen SE, Rosenberg SA. Extravasation of intravascular fluid mediated by the systemic administration of recombinant Interleukin-2. J Immunol 137: 1735–1742, 1986.

    PubMed  CAS  Google Scholar 

  139. Kotasek D, Vercellotti GM, Ochoa AC, et al. Mechanism of cultured endothelial injury induced by lymphokine-activated killer cells. Cancer Res 48:5528–5532, 1988.

    PubMed  CAS  Google Scholar 

  140. Damle NK, Doyle LV. IL-2 activated human killer lymphocytes but not their secreted products mediated increase in albumin flux across cultured endothelial monolayers. J Immunol 142:2660–2669, 1989.

    PubMed  CAS  Google Scholar 

  141. Klausner JM, Morel N, Paterson IS, et al. The rapid induction by interleukin-2 of pulmonary microvascular permeability. Ann Surg 209:119–128, 1989.

    Article  PubMed  CAS  Google Scholar 

  142. Lee RE, Lotze MT, Skibber JM, et al. Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol 7:7–20, 1989.

    PubMed  CAS  Google Scholar 

  143. Miles D, Thomsen L, Balkwill F, et al. Association between biosynthesis of nitric oxide and changes in immunological and vascular parameters in patients treated with IL-2. Eur J Clin Invest 24:287–290, 1994.

    Article  PubMed  CAS  Google Scholar 

  144. Kilbourn RG, Owen-Shaub LB, Cromeens DM, et al. NG-Methyl-L-arginine, an inhibitor of nitric oxide formation, reverses IL-2-mediated hypotension in dogs. J Applied Physiol 76:1130–1137, 1994.

    CAS  Google Scholar 

  145. Rosenberg SA, Lotze MT, Yang JC, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 210:474–485, 1989.

    Article  PubMed  CAS  Google Scholar 

  146. Belldegrun A, Webb DE, Austin HA, et al. Effects of interleukin-2 on renal function in patients receiving immunotherapy for advanced cancer. Ann Int Med 106:817–822, 1987.

    PubMed  CAS  Google Scholar 

  147. Guleria AS, Yang JC, Topalian SL, et al. Renal dysfunction associated with the administration of high-dose interleukin-2 in 199 consecutive patients with metastatic melanoma or renal carcinoma. J Clin Oncol 12:2714–2722, 1994.

    PubMed  CAS  Google Scholar 

  148. Denicoff KD, Durkin TM, Lotze MT, et al. The neuroendocrine effects of interleukin-2 treatment. J Clin Endocrinol Metabol 69:402–410, 1989.

    Article  CAS  Google Scholar 

  149. Mitchison NA. Passive transfer of transplantation immunity. Nature 171:267–268, 1953.

    Article  PubMed  CAS  Google Scholar 

  150. Mitchison NA. Studies on the immunological response to foreign tumor transplants in the mouse. J Exp Med 102:157–177, 1955.

    Article  PubMed  CAS  Google Scholar 

  151. Svedmyr E. Long-term maintenance in vitro of human T cells by repeated exposure to the same stimulator cells. Scand J Immunol 4:421–427, 1975.

    Article  PubMed  CAS  Google Scholar 

  152. Dennert G, DeRose M. Continuously proliferating T killer cells specific for H-2b targets: selection and characterization. J Immunol 116:1601–1606, 1976.

    PubMed  CAS  Google Scholar 

  153. Rosenberg SA, Grimm EA, McGrogan M, et al. Biological activity of recombinant human interleukin-2 produced in Escherichia coli. Science 223:1412–1415, 1984.

    Article  PubMed  CAS  Google Scholar 

  154. Yron I, Wood TA, Spiess PJ, Rosenberg SA. In vitro growth of murine T cells: V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol 125:238–245, 1980.

    PubMed  CAS  Google Scholar 

  155. Mills GB, Paetkau V. Generation of cytotoxic lymphocytes to syngeneic tumor by using co-stimulator (interleukin-2). J Immunol 125:1897–1903, 1980.

    PubMed  CAS  Google Scholar 

  156. Lotze MT, Grimm EA, Mazumder A, et al. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res 41:4420–4425, 1981.

    PubMed  CAS  Google Scholar 

  157. Mills GB, Carlson G, Paetkau V. Generation of cytotoxic lymphocytes to syngeneic tumors by using co-stimulator (interleukin 2): In vivo activity J Immunol 125:1904–1909, 1980.

    CAS  Google Scholar 

  158. Mazumder A, Rosenberg SA. Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin-2. J Exp Med 159:495–507, 1984.

    Article  PubMed  CAS  Google Scholar 

  159. Mulé JJ, Shu S, Schwarz SL, Rosenberg SA. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science 225: 1487–1489, 1984.

    Article  PubMed  Google Scholar 

  160. Lafreniere R, Rosenberg SA. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin-2. Cancer Res 45:3735–3741, 1985.

    PubMed  CAS  Google Scholar 

  161. Lafreniere R, Rosenberg SA. Adoptive immunotherapy of murine hepatic metastases with lymphokine activated killer (LAK) cells and recombinant interleukin-2 (RIL 2) can mediate the regression of both immunogenic and nonimmunogenic sarcomas and an adenocarcinoma. J Immunol 135:4273–4280, 1985.

    PubMed  CAS  Google Scholar 

  162. Papa MZ, Mulé JJ, Rosenberg SA. Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: Successful immunotherapy of established pulmonary metastases from weakly immunogenic and nonimmunogenic murine tumors of three distinct histological types. Cancer Res 46:4973–4978, 1986.

    PubMed  CAS  Google Scholar 

  163. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321, 1986.

    Article  PubMed  CAS  Google Scholar 

  164. Mulé JJ, Yang J, Shu S, et al. The anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: Direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells. J Immunol 136: 3899–3909, 1986.

    PubMed  Google Scholar 

  165. Mulé JJ, Yang J, Lafreniere R, et al. Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose, recombinant interleukin-2. J Immunol 139:285–294, 1987.

    PubMed  Google Scholar 

  166. Yang JC, Mulé JJ, Rosenberg SA. Surg Forum 36:408–410, 1985.

    Google Scholar 

  167. Weber JS, Jay G, Tanaka K, Rosenberg SA. Immunotherapy of murine tumors with interleukin-2. J Exp Med 166:1716–1733, 1987.

    Article  PubMed  CAS  Google Scholar 

  168. Cameron RB, Mcintosh JK, Rosenberg SA. Synergistic antitumor effects of combination immunotherapy with recombinant interleukin-2 and a recombinant hybrid interferon-alpha in the treatment of established murine hepatic metastases. Cancer Res 48:5810–5817, 1988.

    PubMed  CAS  Google Scholar 

  169. Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin-2. JAMA 271:907–913, 1994.

    Article  PubMed  CAS  Google Scholar 

  170. Elson PJ, Witte RS, Trump DL. Prognostic factors for survival in patients with recurrent or metastatic renal cell carcinoma. Cancer Res 48:7310–7313, 1988.

    PubMed  CAS  Google Scholar 

  171. Rosenberg SA, Lotze MT, Yang JC, et al. Prospective randomized trial of high-dose interleukin-2 alone or in combination with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85:622–632, 1993.

    Article  PubMed  CAS  Google Scholar 

  172. Dillman RO, Church C, Oldham RK, et al. Inpatient continuous-infusion interleukin-2 in 788 patients with cancer. Cancer 71:2358–2370, 1993.

    Article  PubMed  CAS  Google Scholar 

  173. Sleijfer D Th, Janssen RAJ, Buter J, et al. Phase II study of subcutaneous interleukin-2 in unselected patients with advanced renal cell cancer on an outpatient basis. J Clin Oncol 10:1119–1123, 1992.

    PubMed  CAS  Google Scholar 

  174. Rosenberg SA, Lotze MT, Yang JC, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 210:474–485, 1989.

    Article  PubMed  CAS  Google Scholar 

  175. Keilholz U, Scheibenbogen C, Tilgen W, et al. Interferon-a and interleukin-2 in the treatment of metastatic melanoma. Cancer 72:607–614, 1993.

    Article  PubMed  CAS  Google Scholar 

  176. Atzpodien J, Körfer A, Franks CR, et al. Home therapy with recombinant interleukin-2 and interferon-alpha in advanced human malignancies. Lancet 335:1509–1512, 1990.

    Article  PubMed  CAS  Google Scholar 

  177. Lissoni P, Barni S, Ardizzoia A, et al. Second line therapy with low-dose, subcutaneous interleukin-2 alone in advanced renal cancer patients resistant to interferon-alpha. Eur J Cancer 28:92–96, 1992.

    Article  PubMed  CAS  Google Scholar 

  178. Atzpodien J, Kirchner H. The outpatient use of recombinant human interleukin-2 and interferon alpha-2b in advanced malignancies. Eur J Cancer 27 (Suppl 4):S88-S91, 1991.

    PubMed  Google Scholar 

  179. Rubin JT, Elwood LJ, Rosenberg SA, Lotze MT. Immunohistochemical correlates of response to recombinant interleukin-2 based immunotherapy in humans. Cancer Res 49:7086–7092, 1989.

    PubMed  CAS  Google Scholar 

  180. Rubin JT, Day R, Duquesnoy R, et al. HLA-DQ1 is associated with clinical response and prolonged survival of patients with melanoma who are treated with interleukin-2 based therapy. Ther Immunol (in press).

    Google Scholar 

  181. Bursten SL, Harris WE, Bomsztyk K, et al. Interleukin-1 rapidly stimulates lysophospha-tidate acyltransferase and phosphatidate phosphohydrolase activities in human mesangial cells. J Biol Chem 266:31:20732–20743, 1991.

    Google Scholar 

  182. Fearon ER, Pardoll DM, Itaya T, et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60:397–403, 1990.

    Article  PubMed  CAS  Google Scholar 

  183. Gansbacher B, Zier K, Daniels B, et al. Interleukin-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 172:1217–1224, 1993.

    Article  Google Scholar 

  184. Connor J, Bannerji R, Soito S, et al. Regression of bladder tumors in mice treated with interleukin-2 gene modified tumor cells. 177:1127–1134, 1993.

    CAS  Google Scholar 

  185. Pizza G, Severini G, Menniti D, et al. Tumor regression after intralesional injection of interleukin-2 (IL-2) in bladder cancer. Int J Cancer 34:359–367, 1984.

    Article  PubMed  CAS  Google Scholar 

  186. Mavligit GM, et al. Splenic versus hepatic artery infusion of IL-2 in patients with liver metastases. J Clin Oncol 8:319–324, 1990.

    PubMed  CAS  Google Scholar 

  187. Yamamoto M, et al. Hepatic artial infusion of IL-2 in advanced hepatocellular carcinoma. Acta Oncol 32:43–51, 1993.

    Article  PubMed  CAS  Google Scholar 

  188. Lygidakis NJ, Savanas G, Toloupakis E, et al. Induced in vivo targeted transarterial and trasvenous immunostimulation in patients with unresectable pancreatic carcinoma. Hepato-gastroenterol 40:574–581, 1993.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rubin, J.T. (1995). Interleukin-2: Its rationale and role in the treatment of patients with cancer. In: Kurzrock, R., Talpaz, M. (eds) Cytokines: Interleukins and Their Receptors. Cancer Treatment and Research, vol 80. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1241-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1241-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8528-1

  • Online ISBN: 978-1-4613-1241-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics