Skip to main content

Saturation in Nuclear Matter: a New Perspective

  • Chapter
Condensed Matter Theories

Abstract

The nucleon self-energy in nuclear matter is calculated including particle- particle (pp) as well as hole-hole (hh) ladder contributions. It is shown that a proper treatment of the analytic structure of the ladder summed effective interaction ΓB, requires the numerical use of dispersion relations in order to calculate the self-energy correctly. These results in principle allow a fully self-consistent treatment of the ladder equation and the Dyson equation for the single-particle propagator including the full energy dependence of the self-energy. As a first step towards such a complete solution the single-particle energy is calculated self-consistently from the real on-shell self-energy which contains both forward(pp)- and backward(hh)- going terms. The contribution of the hh contribution to the sp energy is repulsive for all momenta and larger than the increased attraction from the pp contribution leading to less binding energy. This effect increases strongly with density and therefore leads to a saturation mechanism which has not been identified previously. First results for the v2 homework potential are discussed.

This reseach was supported in part by NATO under Grant No. RG.85/0684 and by the Condensed Matter Theory Program of the Division of Materials Research of the U.S National Science foundation under Grant No. DMR-8519077 (at Washington University).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. D. Day, Comm. Nucl. and Part. Phys. 11, 115 (1983).

    CAS  Google Scholar 

  2. A. D. Jackson, Ann. Rev. Nucl. Sci. 33, 105 (1983).

    Article  CAS  Google Scholar 

  3. B. D. Day, Phys. Rev. Lett. 47, 226 (1981).

    Article  CAS  Google Scholar 

  4. B. D. Day, Phys. Rev. C 24, 1203 (1981).

    Article  CAS  Google Scholar 

  5. V. R. Pandharipande and R. B. Wiringa, Rev. Mod. Phys. 51, 821 (1979).

    Article  CAS  Google Scholar 

  6. B. D. Day and R. B. Wiringa, Phys. Rev. C 32, 1057 (1985).

    Article  CAS  Google Scholar 

  7. J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys. A401, 59 (1983).

    CAS  Google Scholar 

  8. M. R. Anastasio, L. S. Celenza, W. S. Pong, and C. M. Shakin, Phys. Reports 100C, 327 (1983).

    Article  Google Scholar 

  9. C. J. Horowitz and B. D. Serot, Phys. Lett. 137B, 287 (1984).

    CAS  Google Scholar 

  10. R. Brockmann and R. Machleidt, Phys. Lett. 149B, 283 (1984).

    CAS  Google Scholar 

  11. B. ter Haar and R. Malfliet, Phys. Reports 149C, 207 (1987).

    Article  Google Scholar 

  12. H. A. Bethe, Ann. Rev. Nucl. Sci. 21, 93 (1971).

    Article  CAS  Google Scholar 

  13. F. Weber and M. K. Weigel, Phys. Rev. C32, 2141 (1985).

    Google Scholar 

  14. H. R. Glyde and S. I. Hernadi, Phys. Rev. B28, 141 (1983).

    Google Scholar 

  15. A. Ramos, A. Polls, and W. H. Dickhoff, in preparation.

    Google Scholar 

  16. J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Reports 25C, 83 (1976).

    Article  CAS  Google Scholar 

  17. C. Mahaux, P. F. Bortignon, R. A. Broglia, and C. H. Dasso, Phys. Reports 120C, 1 (1985).

    Article  Google Scholar 

  18. J. G. Zabolitzky, Phys. Rev. A16, 1258 (1977).

    Google Scholar 

  19. D. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B16, 3081 (1977).

    Google Scholar 

  20. M. F. Flynn, J. W. Clark, R. M. Panoff, O. Bohigas, and S. Stringari. Nucl. Phys. A427, 253 (1984).

    CAS  Google Scholar 

  21. B. D. Day, private communication to J. W. Clark.

    Google Scholar 

  22. T. T. S. Kuo, Z. Y. Ma, and R. Vinh Mau, Phys. Rev. C33, 717 (1986).

    Google Scholar 

  23. R. V. Reid, Ann. Phys. 50, 411 (1968).

    Article  Google Scholar 

  24. P. Grangé and A. Lejeune, Nucl. Phys. A327, 335 (1979).

    Google Scholar 

  25. A. Landé and R. A. Smith, Phys. Lett. 131B, 253 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Ramos, A., Polls, A., Dickhoff, W.H. (1988). Saturation in Nuclear Matter: a New Perspective. In: Arponen, J.S., Bishop, R.F., Manninen, M. (eds) Condensed Matter Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0971-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0971-0_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8271-6

  • Online ISBN: 978-1-4613-0971-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics