Skip to main content

The Chemistry and Activation of Dioxygen Species (O2, O2 -., and HOOH) in Biology

  • Chapter
Oxygen Complexes and Oxygen Activation by Transition Metals

Abstract

Biological systems activate dioxygen(02) for controlled energy transduction and chemical syntheses. This is accomplished via electron-transfer reduction of 02 to 02 -and HOOH, and its atomization with metalloproteins to accomplish atom-transfer chemistry. These reactive intermediates have been characterized by the use of (a) transition-metal complexes as models for metalloproteins and (b) model substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Day, “Genesis on Planet Earth,” 2nd ed., Yale University Press, New Haven (1984).

    Google Scholar 

  2. H. Metzner, ed., “Photosynthetic Oxygen Evolution,” Academic Press, New York (1978).

    Google Scholar 

  3. W.C. Barrette, Jr., H.W. Johnson, Jr., and D.T. Sawyer, Anal. Chem. 56, 1890–1898 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. D.T. Sawyer, G. Chiericato, Jr., C.T. Angelis, E.J. Nanni, Jr., and T. Tsuchiya, Anal. Chem. 54, 1720–1724 (1982).

    Article  CAS  Google Scholar 

  5. R. Parsons, “Handbook of Electrochemical Constants,” Butterworths Scientific Publications, London, pp. 69–73 (1959).

    Google Scholar 

  6. H.A. Schwarz and R.W. Dodson, J. Phys. Chem. 88, 3643 (1984).

    Article  CAS  Google Scholar 

  7. J. Wilshire and D.T. Sawyer, Acc. Chem. Res. 12, 105–110 (1979).

    Article  CAS  Google Scholar 

  8. P. Cofre’ and D.T. Sawyer, Anal. Chem. 58, 1057–1062 (1986).

    Article  Google Scholar 

  9. P. Cofre’ and D.T. Sawyer, Inorg. Chem. 25, 2089–2092 (1986).

    Article  Google Scholar 

  10. D.T. Sawyer, J.L. Roberts, Jr., T. Tsuchiya, and G.S. Srivatsa, in “Oxygen Radicals in Chemistry and Biology,” W. Bors, M. Saran and D. Tait, ed., Walter de Gruyter and Co., pp. 25–33. Berlin: (1984).

    Chapter  Google Scholar 

  11. J.L. Roberts, Jr., M.M. Morrison, and D.T. Sawyer, J. Am. Chem. Soc. 100, 329 (1978).

    Article  CAS  Google Scholar 

  12. J.L. Roberts, Jr. and D.T. Sawyer, Israel J. of Chem. 23, 430–438 (1983).

    CAS  Google Scholar 

  13. D.-H. Chin, G. Chiericato, Jr., E.J. Nanni, Jr., and D.T. Sawyer, J, Am. Chem. Soc, 104, 1296 (1982).

    Article  CAS  Google Scholar 

  14. M.J. Gibian, D.T. Sawyer, T. Ungerman, R. Tangpoonpholvivat, and M.M. Morrison, J. Am. Chem. Soc. 101, 640–644 (1979).

    Article  CAS  Google Scholar 

  15. J.L. Roberts, Jr., T.S. Calderwood, and D.T. Sawyer, J. Am. Chem. 105, 7691–7696 (1983).

    Article  CAS  Google Scholar 

  16. D.T. Sawyer, J.J. Stamp, and K.A. Menton, J. Org. Chem. 48, 3733–3736 (1983).

    Article  CAS  Google Scholar 

  17. I. Fridovich, in “Oxygen and Oxy Radicals,” M.A.J. Rodgers and E.L. Powers, eds., Academic Press, New York, p. 197 (1981)

    Google Scholar 

  18. J.A. Fee, Ibid., p. 205.

    Google Scholar 

  19. D.T. Sawyer, J.L. Roberts, Jr., T.S. Calderwood, H. Sugimoto, and M.S. McDowell, Phil. Trans. R. Soc. Lond. B 311, 483–503 (1985).

    Article  CAS  Google Scholar 

  20. T.S. Calderwood, C.L. Johlman, J.L. Roberts, Jr., C.L. Wilkins, and D.T. Sawyer, J. Am. Chem. Soc. 106, 4683–4687 (1984).

    Article  CAS  Google Scholar 

  21. D.T. Sawyer, M.S. McDowell, and K.S. Yamaguchi, Chem. Res. Tox. submitted (1987).

    Google Scholar 

  22. S. Matsumoto, H. Sugimoto, and D.T. Sawyer, Chem. Res. Tox. submitted (1987).

    Google Scholar 

  23. H. Sugimoto and D.T. Sawyer, J. Am. Chem. Soc. 107, 5712 (1985).

    Article  CAS  Google Scholar 

  24. H. Sugimoto and D.T. Sawyer, J. Am. Chem. Soc. 106, 4783 (1984).

    Article  Google Scholar 

  25. H. Sugimoto and D.T. Sawyer, J. Org. Chem. 50, 1785 (1985).

    Article  Google Scholar 

  26. H. Sugimoto, L. Spencer, and D.T. Sawyer, Proc. Natl. Acad. Sci. USA 84,1731–1733 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. P. George, Adv. Catal. 4, 367 (1952)

    Article  CAS  Google Scholar 

  28. P. George, Biochim, J. 54, 267 (1953)

    CAS  Google Scholar 

  29. P. George, Biochim. J. 55, 220 (1953).

    CAS  Google Scholar 

  30. J.E. Denner-Hahn, K.S. Eble, T.J. MacMurray, M. Renner, A.L. Balch, J.T. Groves, J.H. Dawson and K.O. Hodgson, J. Am. Chem. Soc. 108, 7819 (1986).

    Article  Google Scholar 

  31. P.F. Guengerich and T.L. McDonald, Acc. Chem. Res. 17, 9 (1984).

    Article  CAS  Google Scholar 

  32. J.T. Groves, R.C. Haushalter, M. Nakamura, T.E. Nemo and B.J. Evans, J. Am. Chem. Soc. 103, 2884–2886 (1981);

    Article  CAS  Google Scholar 

  33. J.T. Groves and Y. Watanabe, J. Am. Chem. Soc. 108, 7834–7836 (1986).

    Article  CAS  Google Scholar 

  34. P.S. Traylor, D. Dolphin, and T.G. Traylor, J. Chem. Soc. Chem. Commun. 279-280 (1984);

    Google Scholar 

  35. T.G. Traylor, T. Nakano, B.E. Dunlap, P.S. Traylor, and D. Dolphin, J. Am. Chem. Soc. 108, 2782–2784 (1986).

    Article  CAS  Google Scholar 

  36. C.M. Dicken, T.C. Woon, and T.C. Bruice, J. Am. Chgrn. Soc. 108, 1636–1643 (1986);

    Article  CAS  Google Scholar 

  37. T.S. Calderwood and T.C. Bruice, Inorg. Chem. 25, 3722–3724 (1986);

    Article  CAS  Google Scholar 

  38. T.S. Calderwood, W.A. Lee, and T.C. Bruice, J. Am. Chem. Soc. 107, 8272–8273 (1985).

    Article  CAS  Google Scholar 

  39. J.P. Collman, T. Kodadek, and J.I. Brauman, J. Am. Chem. Soc. 108, 2588–2594 (1986).

    Article  CAS  Google Scholar 

  40. Ortiz Montellano, Ed. “Cytochrome P-450,” Plenum Press, New York, (1986).

    Google Scholar 

  41. D.T. Sawyer, Comments Inorg. Chem. VI. 103–121 (1987).

    Article  Google Scholar 

  42. W.A. Goddard, III and B.D. Olafson, Proc. Nat. Acad. Sci. USA 72, 2335–2339 (1975).

    Article  PubMed  CAS  Google Scholar 

  43. P.K.S. Tsang, P. Cofre’, and D.T. Sawyer, Inorg. Chem. 26.•0000–0000 (1987).

    Article  Google Scholar 

  44. H. Sugimoto, H.-C. Tung, and D.T. Sawyer, J. Am. Chem. Soc. submitted (1987).

    Google Scholar 

  45. M. Chance, L. Powers, T. Poulos, and B. Chance, Biochemistry 25, 1266 (1986).

    Article  PubMed  CAS  Google Scholar 

  46. E.G. Samsel, K. Srinivasan, and J.K. Kochi, J. Am. Chem. Soc. 107, 7606–7617 (1985).

    Article  CAS  Google Scholar 

  47. M.B. MacCarthy and R.E. White, J. Biol. Chem. 258, 9153–9158 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Sawyer, D.T. (1988). The Chemistry and Activation of Dioxygen Species (O2, O2 -., and HOOH) in Biology. In: Martell, A.E., Sawyer, D.T. (eds) Oxygen Complexes and Oxygen Activation by Transition Metals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0955-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0955-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8263-1

  • Online ISBN: 978-1-4613-0955-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics