Skip to main content

Excitotoxins and Animal “Models” of Human Disease

  • Conference paper
Recent Advances in Nervous System Toxicology

Part of the book series: NATO ASI Series ((NSSA,volume 100))

Abstract

Glutamate, aspartate and a number of structurally related amino acids possess the capacity not only to excite neurons in the CNS, but also to bring about their destruction if administered at a sufficiently high concentration. The neurotoxic effects are diverse and not yet well understood. Nevertheless, they are being exploited by neuroscientists as a means of providing much new information about the operation of neuronal systems. This review will be concerned with a brief description of some of the excitatory and neurotoxic amino acids that have been investigated to date, their diverse modes of action and their use to produce some animal models of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.L. McGeer and E.G. McGeer, Amino acid neurotransmitters, in: “Basic Neurochemistry”, G.J. Siegel, A.W. Albers, B.W. Agranoff and R. Katzman, eds., Little Brown & Co., Boston, pp. 233–254, 1981.

    Google Scholar 

  2. J.W. Olney, C.K. Misra and V. Rhee, Brain and retinal damage from lathyrus excitotoxin, β-N-oxalyl-L-α,β-diaminopropionic acid, Nature 264:659 (1976).

    Article  PubMed  CAS  Google Scholar 

  3. J.W. Olney, Neurotoxicity of excitatory amino acids, in: “Kainic Acid as a Tool in Neurobiology”, E.G. McGeer, J.W. Olney and P.L. McGeer, eds., Raven Press, New York, pp. 95–122, 1978.

    Google Scholar 

  4. I.R. Duce, P.L. Donaldson and P.N.R. Usherwood, Investigations into the mechanism of excitant amino acid cytotoxicity using a well-characterized glutamatergic system, Brain Res. 263:77 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. P.L. McGeer, E.G. McGeer and T. Hattori, Kainic acid as a tool in neurobiology, in: “Kainic Acid as a Tool in Neurobiology”, E.G. McGeer, J.W. Olney and P.L. McGeer, eds., Raven Press, New York, pp. 123–138, 1978.

    Google Scholar 

  6. G.G.S. Collins, J. Anson and L. Surtees, Presynaptic kainite and N-methyl-D-aspartate receptors regulate excitatory amino acid release in the olfactory cortex, Brain Res. 265:157 (1983).

    Article  PubMed  CAS  Google Scholar 

  7. J.W. Ferkany and J.T. Coyle, Kainic acid selectively stimulates the release of endogenous excitatory acidic amino acids, J. Pharmacol. Exp. Ther. 225:399 (1983).

    PubMed  CAS  Google Scholar 

  8. J.W. Ferkany, R. Zaczek and J.T. Coyle, The mechanism of kainic acid neurotoxicity, Nature 308:561 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. S.J. Potashner and D. Gerard, Kainate-enhanced release of D-[3H]aspartate from cerebral cortex and striatum: reversal by baclofen and pentobarbital, J. Neurochem. 40:1548 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. K.C. Retz and J.T. Coyle, Kainic acid lesion of mouse striatum: effects on energy metabolites, Life Sci. 27:2495 (1982)

    Article  Google Scholar 

  11. E.G. McGeer, P.L. McGeer and K. Singh, Kainic acid-induced degeneration of neostriatal neurons: dependency upon corticostriatal tract, Brain Res. 139:381 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. P.L. McGeer and E.G. McGeer, Kainate as a selective lesioning agent, in: “Glutamate: Transmitter in the Central Nervous System”, P.J. Roberts, J. Storm-Mathisen and G.A.R. Johnston, eds., John Wiley & Sons Ltd., London, pp. 55–75 (1981).

    Google Scholar 

  13. K. Fuxe, L.F. Agnati and F. Celani, Evidence for interactions between [3H]glutamate and [3H]kainic acid binding sites in rat striatal membranes. Possible relevance for kainic acid neurotoxicity, Neurosci. Lett. 35:233 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. K. Biziere and J.T. Coyle, Influence of cortico-striatal afferents on striatal kainic acid neurotoxincity, Neurosci. Lett. 8:303 (1981).

    Article  Google Scholar 

  15. E.G. McGeer and P.L. McGeer, Some factors influencing the neurotoxicity of intrastriatal injections of kainic acid, Neurochem. Res. 3:501 (1978).

    Article  PubMed  CAS  Google Scholar 

  16. W.O. Guldin and H.J. Markowitsch, No detectable remote lesions following massive intrastriatal injections of ibotenic acid, Brain Res. 225:446 (1981).

    Article  PubMed  CAS  Google Scholar 

  17. R. Schwarcz, T. Hokfelt, K. Fuxe, G. Jonsson, M. Goldstein and L. Terenius, Ibotenic acid-induced neuronal degeneration: A morphological and neurochemical study, Exp. Brain Res. 37:199 (1979).

    Article  PubMed  CAS  Google Scholar 

  18. R. Schwarcz, C. Kohler, K. Fuxe, T. Hokfelt and M. Goldstein, On the mechanism of selective neuronal degeneration in the rat brain: studies with ibotenic acid, in: “Advances in Neurology”, Vol. 23, T.N. Chase, N.S. Wexler and A. Barbeau, eds., Raven Press, New York, pp. 655–668, 1979.

    Google Scholar 

  19. R.C. Schwarcz, W.O. Whetsell Jr and R.M. Mangano, Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain, Science 219:316 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. C. Kohler and R. Schwarcz, Comparison of ibotenate and kainate neurotoxicity in rat brain: a histological study, Neuroscience 8:819 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. R. Schwarcz, J.F. Collins and D.A. Parks, α-Amino-ω-phosphono carboxylates block ibotenate but not kainate neurotoxicity in rat hippocampus, Neurosci. Lett. 33:85 (1982).

    Article  PubMed  CAS  Google Scholar 

  22. H.X. Steiner, G.J. McBean, C. Kohler, P.J. Roberts and R. Schwarcz, Ibotenate-induced neuronal degeneration in immature rat brain, Brain Res. 307:117 (1984).

    Article  PubMed  CAS  Google Scholar 

  23. M.N. Perkins and T.W. Stone, Quinolinic acid: regional variations in neuronal sensitivity, Brain Res. 259:172 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. R. Schwarcz and C. Kohler, Differential vulnerability of central neurons of the rat to quinolinic acid, Neurosci. Lett. 38: 85 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. R. Schwarcz, G.S. Brush, A.C. Foster and E.D. French, Seizure activity and lesions after iontrahippocampal quinolinic acid injection, Exp. Neurol. 84:1 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. P.L. McGeer, E.G. McGeer and T. Nagai, GABAergic and cholinergic indices in various regions of rat brain after intracerebral injections of folic acid, Brain Res. 260:107 (1983).

    Article  PubMed  CAS  Google Scholar 

  27. J.W. Olney, T.A. Fuller, T. de Gubareff and J. Labruyere, Intrastriatal folic acid mimics the distant but not the local brain damage properties of kainic acid, Neurosci. Lett. 25:185 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. E.G. McGeer and P.L. McGeer, Substantia nigra cell death from kainic acid or folic acid injections into the pontine tegmentum, Brain Res. 298:339 (1984).

    Article  PubMed  CAS  Google Scholar 

  29. J.T. Coyle and R. Schwarcz, Lesion of striatal neurons with kainic acid provides a model for Huntington’s Chorea, Nature 263:244 (1976).

    Article  PubMed  CAS  Google Scholar 

  30. E.G. McGeer and P.L. McGeer, Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids, Nature 263:517 (1976).

    Article  PubMed  CAS  Google Scholar 

  31. J.T. Coyle, E.G. McGeer, P.L. McGeer and R. Schwarcz, Neostriatal injections: a model for Huntington’s chorea, in: “Kainic Acid as a Tool in Neurobiology”, E.G. McGeer, J.W. Olney and P.L. McGeer, eds., Raven Press, New York, pp. 139–160, 1978.

    Google Scholar 

  32. E. Krammer, Anterograde and transynaptic degeneration ‘en cascade’ in basal ganglia induced by intrastriatal injection of kainic acid: an animal analogue of Huntington’s disease, Brain Res. 196:209 (1980).

    Article  PubMed  CAS  Google Scholar 

  33. E.G. McGeer, P.L. McGeer, T. Hattori and S.R. Vincent, Kainicacid neurotoxicity and Huntington’s disease, Adv. Neurol. 23:577 (1979).

    CAS  Google Scholar 

  34. R. Schwarcz, K. Fuxe, T. Hokfelt, L. Terenius and M. Goldstein, Effects of chronic striatal kainate lesions on some dopaminergic parameter and enkephalin immunoreactive neurons in the basal ganglia, J. Neurochem. 34:772 (1979).

    Article  Google Scholar 

  35. N. Ando, B.I. Gold, E.D. Bird and R.H. Roth, Regional brain levels of γ-hydroxybutyrate in Huntington’s disease, J Neurochem. 32: 617 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. N. Ando, J.R. Simon and R.H. Roth, Inverse relationship between GABA and γ-hydroxybutyrate levels in striatum of rats injected with kainic acid, J. Neurochem. 32:623 (1979).

    Article  PubMed  CAS  Google Scholar 

  37. L.M. Neckers, N.H. Neff and R.J. Wyatt, Increased serotonin turnover in corpus striatum following an injection of kainic acid: evidence for neuronal feedback regulation of synthesis, Naunyn-Schmied. Arch. Pharmacol. 306:173 (1979).

    Article  CAS  Google Scholar 

  38. G. Sperk, M. Berger, H. Hortnagl and O. Hornykiewicz, Kainic acid-induced changes of serotonin and dopamine metabolism in the striatum and substantia nigra of the rat, Eur. J. Pharmacol. 74:279 (1981).

    Article  PubMed  CAS  Google Scholar 

  39. E.R. Spindel, R.J. Wurtman and E.D. Bird, Increased TRH content of the basal ganglia in Huntington’s disease, N. Engl. J. Med. 303:1235 (1980).

    PubMed  CAS  Google Scholar 

  40. E.R. Spindel, D.J. Pettibone and R.J. Wurtman, Thyrotropin-releasing hormone (TRH) content of rat striatum: modification by drugs and lesions, Brain Res. 216:323 (1981).

    Article  PubMed  CAS  Google Scholar 

  41. G.D. Burd, P.E. Marshall, M.F. Beal, D.M.D. Landis and J.B. Martin, Effects of kainic and ibotenic acid on the neostriatal somatostatin system of the rat. Neurosci. Absts. 12:140 (1982).

    Google Scholar 

  42. D.C. Emson, J.F. Rehfeld, H. Langvin and M. Rossor, Reduction in cholecystokinin-like immunoreactivity in the basal ganglia in Huntington’s disease, Brain Res. 198:497 (1980).

    Article  PubMed  CAS  Google Scholar 

  43. M.R. Higatsberger, G. Sperk, H. Bernheimer, K.S. Shannak and O. Hornykiewicz, Striatal ganglioside levels in the rat following kainic acid lesions comparison with Huntington’d disease, Exp. Brain Res. 44:93 (1981).

    Article  PubMed  CAS  Google Scholar 

  44. P.-T. Wong, E.G. McGeer and P.L. McGeer, Effects of kainic acid injection and cortical lesion on ornithine and aspartate transaminases in rat striatum, J. Neurosci. Res. 8: 643 (1982).

    Article  PubMed  CAS  Google Scholar 

  45. P.-T. Wong, P.L. McGeer, M. Rossor and E.G. McGeer, Ornithine aminotransferase in Huntington’s disease, Brain Res. 231: 466 (1982).

    Article  PubMed  CAS  Google Scholar 

  46. G. Fillion, D. Beaudoin, J.C. Rousselle, J.M. Deniau, M.P. Fillion, F. Dray and J. Jacob, Decrease of [3H]-5-HT high affinity binding and 5-HT adenylate cyclase activation after kainic acid lesion in rat brain striatum, J. Neurochem. 33:567 (1979).

    Article  PubMed  CAS  Google Scholar 

  47. J.Z. Fields, T.D. Reisine and H.I. Yamamura, Loss of striatal dopaminergic receptors after intrastriatal kainic acid, Life Sci. 23:569 (1978).

    Article  PubMed  CAS  Google Scholar 

  48. R.S. Briggs, P. Redgrave and S.R. Nahorski, Effect of kainic acid lesions on muscarinic agonist receptor subtypes in rat striatum, Brain Res. 206:451 (1981).

    Article  PubMed  CAS  Google Scholar 

  49. H. Mohler and T. Okada, The benzodiazepine receptor in normal and pathological human brain, Br. J. Psychiatr. 133:261 (1978).

    Article  CAS  Google Scholar 

  50. G. Sperk and E. Schlogl, Reduction of number of benzodiazepine binding sites in the caudate nucleus of the rat after kainic acid injections, Brain Res. 170:563 (1979).

    Article  PubMed  CAS  Google Scholar 

  51. K. Beaumont, Y. Maurin, T.D. Reisine, J.Z. Fields, E. Spokes, E.D. Bird and H.I. Yamamura, Huntington’s disease and its animal model. Alterations in kainic acid binding, Life Sci. 24: 809 (1979).

    Article  PubMed  CAS  Google Scholar 

  52. H. Henke, Kainic acid binding in human caudate nucleus; effect of Huntington’s disease, Neurosci. Lett. 14:47 (1979).

    Article  Google Scholar 

  53. E.D. London, H.I. Yamamura, E.D. Bird and J.T. Coyle, Decreased receptor-binding sites for kainic acid in brains of patients with Huntington’s disease, Biol. Psychiatry 16: 155 (1981).

    PubMed  CAS  Google Scholar 

  54. S.R. Vincent and E.G. McGeer, Kainic acid binding to membranes of striatal neurons, Life Sci. 24:265 (1979).

    Article  PubMed  CAS  Google Scholar 

  55. R. Zaczek, R. Schwarcz and J.T. Coyle, Long-term sequelea of striatal kainate lesion, Brain Res. 152:626 (1978).

    Article  PubMed  CAS  Google Scholar 

  56. S.J. Enna, E.D. Bird, J.P. Bennett, D.B. Bylund, H.I. Yamamura, L.L. Iversen and S. Snyder, Huntington’s chorea: changes in neurotransmitter receptors in the brain, N. Engl. J. Med. 294:1305 (1976).

    Article  PubMed  CAS  Google Scholar 

  57. N.R. Zahniser, K.P. Minneman and P.B. Molinoff, Persistence of β- adrenergic receptors in rat striatum following kainic acid administration, Brain Res. 178:589 (1979).

    Article  PubMed  CAS  Google Scholar 

  58. A.J. Cross and J.L. Waddington, Substantia nigra γ-aminobutyric acid receptors in Huntington’s disease, J. Neurochem. 37:321 (1981).

    Article  PubMed  CAS  Google Scholar 

  59. J.L. Waddington and A.J. Cross, The striatonigral GABA pathway: functional and neurochemical characteristics in rats with unilateral striatal kainic acid lesions, Eur. J. Pharmacol. 67:27 (1980).

    Article  PubMed  CAS  Google Scholar 

  60. H. Schoemaker, M. Morelli, P. Deshmukh and H.I. Yamamura, [3H]Ro5–4864 benzodiazepine binding in the kainate lesioned striatum and Huntington’s diseased basal ganglia, Brain Res. 248:396 (1982).

    Article  PubMed  CAS  Google Scholar 

  61. S. Nakamura, K. Iwatsubo, C.T. Tsai and K. Iwama, Neuronal activity of the substantia nigra (pars compacta) after injection of kainic acid int the caudate nucleus, Exp. Neurol. 66:682 (1979).

    Article  PubMed  CAS  Google Scholar 

  62. H.C. Fibiger, Kainic acid lesions of the striatum: a pharmacological and behavioral model of Huntington’s disease, in “Kainic Acid as a Tool In Neurobiology”, E.G. McGeer, J.W. Olney and P.L. McGeer, eds., Raven Press, New York, pp. 161–176 (1978).

    Google Scholar 

  63. R.E. Hruska and E.K. Silbergeld, Abnormal locomotion in rats after bilateral intrastriatal injection of kainic acid, Life Sci. 25:181 (1979).

    Article  PubMed  CAS  Google Scholar 

  64. I. Divac, H.J. Markowitsch and M. Pritzel, Behavioral and anatomical consequences of small intrastriatal injections of kainic acid in the rat, Brain Res. 151:523 (1978).

    Article  PubMed  CAS  Google Scholar 

  65. P.R. Sanberg, J. Lehmann and H.C. Fibiger, Impaired learning and memory after kainic acid lesions of the striatum: a behavioral model of Huntington’s disease, Brain Res. 149: 546 (1978).

    Article  PubMed  CAS  Google Scholar 

  66. P. Sanberg and H.C. Fibiger, Body weight, feeding and drinking behaviors in rats with kainic acid-induced lesions of striatal neurons-with a note on body weight symptomatology in Huntington’s disease, Exp. Neurol. 66:444 (1979).

    Article  PubMed  CAS  Google Scholar 

  67. M. Pisa, P.R. Sanberg and H.C. Fibiger, Locomotor activity, exploration and spatial alternations learning in rats with striatal injections of kainic acid, Physiol. Behav. 24:11 (1980).

    Article  PubMed  CAS  Google Scholar 

  68. P.R. Sanberg, M. Pisa and H.C. Fibiger, Kainic acid injections in the striatum alter the cataleptic and locomotor effects of drugs influencing dopaminergic and cholinergic systems. Eur. J. Pharmacol. 74:347 (1981).

    Article  PubMed  CAS  Google Scholar 

  69. P.R. Sanberg, J. Lehmann and H.C. Fibiger, Sedative effects of apomorphine in an animal model of Huntington’s disease, Arch. Neurol. 36:349 (1979).

    PubMed  CAS  Google Scholar 

  70. R.L. Borison and B.I. Diamond, Kainic acid model predicts therapeutic agents in Huntington’s disease, Trans. Am. Neurol. Assoc., 104:67 (1979).

    PubMed  CAS  Google Scholar 

  71. R.T. Owen, Intrastriatal kainic acid-a possible model for antidyskinetic/antichoreic agents? Methods Exp. Clin. Pharmacol. 2:133 (1980).

    CAS  Google Scholar 

  72. R.H. Schmidt, A. Bjorklund and U. Steveni, Intracerebral grafting of dissociated CNS tissue suspensions: a new approach for neuronal transplantation to deep brain sites, Brain Res. 218:347 (1981).

    Article  PubMed  CAS  Google Scholar 

  73. H. Kimura, P.L. McGeer, Y. Noda and E.G. McGeer, Brain transplants in an animal “model” of Huntington’s disease, Neurosci. Abstrs. 6:235 (1980).

    Google Scholar 

  74. P.L. McGeer, H. Kimura and E.G. McGeer, Transplantation of newborn brain tissue into adult kainic acid lesioned neostriatum, in: “Neural Transplants”, J.R. Sladek Jr. and D.M. Gash, eds., Plenum Press, N.Y., pp. 361–371, 1984.

    Google Scholar 

  75. J.W. Olney and T. de Gubareff, Glutamate neurotoxicity and Huntington’s disease, Nature 271: 557 (1978).

    Article  PubMed  CAS  Google Scholar 

  76. B.A. Beutler, A.B.C. Noronha, M.M. Poon and B.G.W. Arnason, The absence of unique kainic acid-like molecules in urine, serum, and CSF from Huntington’s disease patients, J. Neurol. Sci. 5:355 (1981).

    Article  Google Scholar 

  77. G.J. McBean and P.J. Roberts, Chronic infusion of L-glutamate causes neurotoxicity in rat striatum, Brain Res.290:372 (1984).

    Article  PubMed  CAS  Google Scholar 

  78. G.K. Rieke, A.D. Scarfe and J.F. Hunter, L-Pyroglutamic acid: A neurotoxic imino acid that produces a drug induced model of Huntington’s disease and with a potential role in the etiology of Huntington’s disease, Neurosci. Abs. 9:269 (1983).

    Google Scholar 

  79. E.G. McGeer and E. Singh, Neurotoxic effects of endogenous materials: quinolinic acid, L-pyroglutamic acid and thyroid releasing hormone (TRH), Exp. Neurol. in press.

    Google Scholar 

  80. S. Fox, K. Krnjevic, M.E. Morris, E. Puil and R. Werman, Action of baclofen on mammalian synaptic transmission, Neuroscience 3:495 (1978).

    Article  PubMed  CAS  Google Scholar 

  81. S.J. Potashner, Baclofen effects on amino acid release and metabolism in slices of guinea pig cerebral cortex, J. Neurochem. 32:103 (1979).

    Article  PubMed  CAS  Google Scholar 

  82. J.M. Liebman, G. Pastor, P.S. Bernard and J.K. Saelens, Antagonism of intrastriatal and intravenous kainic acid by various anticonvulsants and GABAmimetics, Life Sci. 27:1991 (1980).

    Article  PubMed  CAS  Google Scholar 

  83. E.G. McGeer, A. Jakubovic and E.A. Singh, Ethanol, baclofen and kainic acid neurotoxicity, Exp. Neurol. 69:359 (1980).

    Article  PubMed  CAS  Google Scholar 

  84. A. Barbeau, GABA and Huntington’s chorea. Lancet 2:1499 (1979)

    Google Scholar 

  85. T.A. Fuller and J.W. Olney, Effects of morphine or naloxone on kainic acid neurotoxicity, Life Sci 24:1793 (1979).

    Article  PubMed  CAS  Google Scholar 

  86. E.G. McGeer, P.L. McGeer and S.R. Vincent, Morphine, naloxone and kainic acid neurotoxicity, Res. Commun. Chem. Path. Pharmac. 25:411 (1979).

    CAS  Google Scholar 

  87. P.R. Sanberg, W. Staines and E.G. McGeer, Chronic taurine effects on various neurochemical indices in control and kainic acid-lesioned neostriatum, Brain Res. 161:367 (1979)

    Article  PubMed  CAS  Google Scholar 

  88. J.F. Gusella, N.S. Wexler, P.M. Conneally, S.L. Naylor, M.A. Anderson, R.E. Tanzi, P.C. Watkins, K. Ottina, M.R. Wallace and A.Y. Sayaguchi, A polymorphic DNA marker genetically linked to Huntington’s disease, Nature 306:234 (1983).

    Article  PubMed  CAS  Google Scholar 

  89. C. Hammond, J. Feger, B. Bioulac and J.P. Souteyrand, Experimental hemiballism in the monkey produced by unilateral kainic acid lesion in corpus Luysii, Brain Res. 171:577 (1979).

    Article  PubMed  CAS  Google Scholar 

  90. F. Malouin and P.J. Bedard, Frontal torticollis (head tilt) induced by electrolytic lesion and kainic acid injection in monkeys and cats, Exp. Neurol. 78:551 (1982).

    Article  PubMed  CAS  Google Scholar 

  91. G. Ricciardi, C. Forchetti, A. Gasbarri, E. Scarnati and C. Pacitti, Neuroexcitatory properties of kainic acid. II) Neuronal damages following intracerebral microinjections in behavioral rats, Boll. Soc. Ital. Biol. Sper. 57:919 (1981)

    PubMed  CAS  Google Scholar 

  92. R. Lewin, Trail of ironies to Parkinson’s disease, Science 224:1083 (1984).

    Article  PubMed  CAS  Google Scholar 

  93. J.T. Coyle, D.L. Price and M.R. DeLong, Alzheimer’s disease: a disorder of cortical cholinergic innervation, Science 219:1184 (1983).

    Article  PubMed  CAS  Google Scholar 

  94. P.L. McGeer, E.G. McGeer and J.H. Peng, Choline acetyltransferase: purification and immunohistochemical localization, Life Sci. 34:2319 (1984).

    Article  PubMed  CAS  Google Scholar 

  95. P.L. McGeer, E.G. McGeer, J. Suzuki, C.E. Dolman and T. Nagai, Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain, Neurology 34:741 (1984).

    PubMed  CAS  Google Scholar 

  96. G.L. Wenk and D.S. Olton, Recovery of neocortical choline acetyltransferase activity following ibotenic acid injection into the nucleus basalis of Meynert in rats, Brain Res. 293:184 (1984).

    Article  PubMed  CAS  Google Scholar 

  97. H.J. Altman, R.D. Crosland, D.J. Jenden and R.F. Berman, Impairment of memory following destruction of the major cholinergic projection to the neocortex, Brain Res., in press.

    Google Scholar 

  98. A. Fisher and I. Hanin, Choline analogs as potential tools in developing selective animal models of central cholinergic hypofunction, Life Sci. 27:1615 (1980).

    Article  PubMed  CAS  Google Scholar 

  99. C.R. Mantioni, A. Fisher and I. Hanin, The AF64A-treated mouse: possible model for central cholinergic hypofunction. Science 213:579 (1981).

    Article  Google Scholar 

  100. I. Hanin, W.C. DeGroat, C.R. Mantione, J.T. Coyle and A. Fisher, Chemically-induced cholinotoxicity in vivo: studies utilizing ethylcholine aziridinium ion (AF64A), in: “Banbury Report 15: Biological Aspects of Alzheimer’s Disease”, Cold Spring Harbor Laboratory, 1983.

    Google Scholar 

  101. K. Sandberg, I. Hanin, A. Fisher and J.T. Coyle, Selective cholinergic neurotoxin: AF64A’s effects in rat striatum, Brain Res. 293:49 (1984).

    Article  PubMed  CAS  Google Scholar 

  102. C.R. Mantioni, M.J. Zigmond, A. Fisher and I. Hanin, Selective presynaptic cholinergic neurotoxicity following intrahippocampal AF64A injection in rats, J. Neurochem. 41:251 (1983).

    Article  Google Scholar 

  103. A. Levy, G.J. Kant, J.L. Meyerhoff and L.E. Jarrard, Non-cholinergic neurotoxic effects of AF64A in the substantia nigra, Brain Res.: 305:169 (1984).

    Article  PubMed  CAS  Google Scholar 

  104. I.B. Introini, C.M. Baratti and P. Huygens, Selective brain noradrenaline depletion induced by the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromo- benzylamine (DSP 4) does not prevent the memory facilitation induced by a muscarinic agonist in mice, Psychopharmacology (Berlin) 82:107 (1984).

    Article  CAS  Google Scholar 

  105. M. Palkovits, M.J. Brownstein, L.E. Eiden, M.C. Beinfeld, J. Russell, A. Arimura and S. Szabo, Selective depletion of somatostatin in rat brain by cysteamine, Brain Res. 240: 178 (1982).

    Article  PubMed  CAS  Google Scholar 

  106. S.M. Sagar, D. Landry, W.J. Millard, T.M. Badger, M.A. Arnold and J.A. Martin, Depletion of somatostatin-like immunoreactivity in the rat central nervous system by cysteamine, J. Neurosci. 2:225 (1982).

    PubMed  CAS  Google Scholar 

  107. J.V. Nadler, Kainic acid as a tool for the study of temporal lobe epilepsy, Life Sci. 29:2031 (1981).

    Article  PubMed  CAS  Google Scholar 

  108. Y. Ben-Ari, J. Lagowska, E. Tremblay and G. Le Gal La Salle, A new model of focal status epilepticus: intra-amygdaloid application of kainic acid elicits repetitive secondarily generalized convulsive seizures, Brain Res 163:176 (1979).

    Article  PubMed  CAS  Google Scholar 

  109. Y. Ben-Ari, E. Tremblay, O.P. Ottersen and R. Naquet, Evidence suggesting secondary epileptogenic lesions after kainic acids pretreatment with diazepam reduces distant but not local brain damage, Brain Res. 165:362 (1979).

    Article  PubMed  CAS  Google Scholar 

  110. D.B. Clifford, E.W. Lothman, W.E. Dodson and J.A. Ferendelli, Effect of anticonvulsant drugs on kainic acid-induced epileptiform activity, Exp. Neurol. 76:156 (1982).

    Article  PubMed  CAS  Google Scholar 

  111. E.W. Lothman, R.C. Collins and J.A. Ferrendell, Kainic acid-induced limbic seizuress electrophysiological studies, Neurology 31:806 (1981).

    PubMed  CAS  Google Scholar 

  112. W. Blackwood and J.A.N. Corsellis eds., “Greenfield’s Neuropathology”, Arnold, London, 1976.

    Google Scholar 

  113. C. Menini, B.S. Meldrum, D. Riche, C. Silva-Comte and J.M. Stutzmann, Sustained limbic seizures induced by intraamygdaloid kainic acid in the baboons Symptomatology and neuropathological consequences, Ann. Neurol. 8:501 (1980).

    Article  PubMed  CAS  Google Scholar 

  114. T. Tanaka, M. Kaijima, G. Daita, S. Ohgami, Y. Yonemasu and D. Riche, Electroclinical features of kainic acid-induced status epilepticus in freely moving cats. Microinjection into the dorsal hippocampus, EEG Clin. Neurophysiol. 54:288 (1982).

    Article  CAS  Google Scholar 

  115. E.A. Cavalheiro, D.A. Riche and G. Le Gal La Salle, Long-term effects of intrahippocampal kainic acid injection in ratss a method for inducing spontaneous recurrent seizures, EEG Clin Neurophysiol. 53:581 (1982).

    Article  CAS  Google Scholar 

  116. E.A. Cavalheiro, L.S. Calderasso Filho, D. Riche, S. Feldblum and G. Le Gal La Salle, Amygdaloid lesion increases the toxicity of intrahippocampal kainic acid injection and reduces the late occurrence of spontaneous recurrent seizures in rats, Brain Res. 262:201 (1982).

    Article  Google Scholar 

  117. E. Cherubini, M.R. De Feo, O. Mecarelli and G.F. Ricci, Behavioral and electrographic patterns induced by systemic administration of kainic acid in developing rats, Dev. Brain Res. 9:69 (1983).

    Article  CAS  Google Scholar 

  118. Y. Ben-Ari, E. Tremblay, M. Berger and L. Nitecka, Kainic acid seizure syndrome and binding sites in developing rats, Dev. Brain Res. 14:284 (1984).

    Article  CAS  Google Scholar 

  119. G. Sperk, H. Lassman, H. Baran, S.J. Kish, F. Seitelberger and O. Hornykiewicz, Kainic acid induced seizuress neurochemical and histopathological changes, Neuroscience 10:1301 (1983).

    Article  PubMed  CAS  Google Scholar 

  120. Y. Ben-Ari, E. Tremblay, D. Riche, G. Ghilini and R. Naquet, Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline or pentetrazoles metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy, Neuroscience 7:1361 (1981).

    Article  Google Scholar 

  121. E.W. Lothman and R.C. Collins, Kainic acid induced limbic seizures: metabolic, behavioral, electrographic and neuropathologic correlates, Brain Res. 218:299 (1981).

    Article  PubMed  CAS  Google Scholar 

  122. E.G. Tremblay, O.P. Ottersen, C. Rovira and Y. Ben-Ari, Intra-amygdaloid injections of kainic acid: regional metabolic changes and their relation to the pathological alterations, Neuroscience 8:299 (1983).

    Article  PubMed  CAS  Google Scholar 

  123. H. Kimura, A. Kaneko and J.A. Wada, Catecholamine and cholinergic systems and amygdaloid kindling, in: “Kindling”, vol. 2, J.A. Wada, ed., Raven Press, New York, pp. 265–287, 1981.

    Google Scholar 

  124. O.R. Hommes and E.A.M.T. Obbens, The epileptogenic action of sodium folate in the rat, J. Neurol. Sci. 16:271 (1972).

    Article  PubMed  CAS  Google Scholar 

  125. D. Goff, A.A. Miller and R.A. Webster, Anticonvulsant drugs and folic acid on the development of epileptic kindling in rats. Brit. J. Pharmacol. 64:406P (1978).

    Google Scholar 

  126. S. Cooke and J. Crossland, Effect of short- and long-term administration of some anticonvulsant drugs on the folate content of rat brain, Brit. J. Pharmacol. 64:407P (1978).

    Google Scholar 

  127. R.L. Blakely, “The Biochemistry of Folic Acid and Related Pteridines”, (Frontiers of Biology, Vol. 13), Amsterdam, North-Holland Publishing Co, 1969.

    Google Scholar 

  128. P.F.M. Houben, O.R. Hommes and P.J.H. Knaven, Anti-convulsant drug an folic acid in young mentally retarded epileptic patients. A study of serum folate, fit frequency and I.Q., Epilepsia (Amst.) 12:235 (1971).

    Article  CAS  Google Scholar 

  129. O.N. Jensen and O.V. Olesen, Folic acid and anti-convulsive drugs, Arch. Neurol. Psychiat. (Chic.) 21:208 (1969).

    CAS  Google Scholar 

  130. A.J. Ralston, R.P. Snaith and J.B. Hinley, Effects of folic acid on fit frequency and behaviour in epileptics on anti-convulsants, Lancet 1970i:867.

    Google Scholar 

  131. E.M. Baylis, J.M. Crowley, J.M. Preece, P.E. Sylvester and V. Marks, Influence of folic acid on blood-phenytoin levels, Lancet 1:62 (1971).

    Article  PubMed  CAS  Google Scholar 

  132. I. Chanarin, J. Laidlaw, L.W. Loughridge and D.L. Mollin, Megaloblastic anaemia due to phenobarbitone. The convulsant action to therapeutic doses of folic acid, Brit. med. J. 1:1099 (1960).

    Article  CAS  Google Scholar 

  133. E.H. Reynolds, I. Chanarin and D.M. Matthews, Neuropsychiatry aspect of anticonvulsant megaloblastic anemia, Lancet 1968i:394.

    Google Scholar 

  134. M.J.W. Brennan, J. Costa, P. Ruff and P. Sutej, Elevation of CSF folate levels following grand mal seizures in untreated patients. Neurosci. Absts. 12:139 (1982).

    Google Scholar 

  135. A. Mayersdorf, R.R. Streiff, B.J. Wilder and R.H. Hammer, Folic acid and vitamin B12 alterations in primary and secondary epileptic foci induced by metallic cobalt powder, Neurology 21:418 (1971).

    Google Scholar 

  136. E.C. Tremblay, E. Cavalheiro and Y. Ben-Ari, Are convulsant and toxic properties of folates of the kainate type? Eur. J. Pharmacol. 93:283 (1983).

    Article  PubMed  CAS  Google Scholar 

  137. W.J. Boyko, C.K. Galabru, E.G. McGeer and P.L. McGeer, Thalamic injections of kainic acid produce myocardial necrosis, Life Sci. 25:87 (1979).

    Article  PubMed  CAS  Google Scholar 

  138. J. Chelly, J.C. Kouyoumdjian, P. Mouille, A.M, Huchet and H. Schmitt, Effects of L-glutamic acid and kainic acid on central α-cardiovascular control, Eur. J. Pharmacol. 60:91 (1979).

    Article  PubMed  CAS  Google Scholar 

  139. J.W. Olney and M.T. Price, Excitotoxic amino acids as neuroendocrine probes, in: “Kainic Acid as a Tool in Neurobiology”, E.G. McGeer, J.W. Olney and P.L. McGeer, eds., Raven Press, New York, pp. 239–264, 1978.

    Google Scholar 

  140. J.W Olney, Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate, Science 164:719 (1969).

    Article  PubMed  CAS  Google Scholar 

  141. D.P. Cameron, T.K.-Y. Poon and G.C. Smith, Effects of monosodium glutamate administration in the neonatal period on the diabetic syndrome in KK mice, Diabetologia 12:621 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

McGeer, E.G., McGeer, P.L. (1988). Excitotoxins and Animal “Models” of Human Disease. In: Galli, C.L., Manzo, L., Spencer, P.S. (eds) Recent Advances in Nervous System Toxicology. NATO ASI Series, vol 100. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0887-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0887-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8229-7

  • Online ISBN: 978-1-4613-0887-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics