Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 100))

Abstract

Organophosphorus insecticides account for some 40% of the registered pesticides in the United States and their world market, already in the order of $1.5 billion, is projected to increase (Ecobichon, 1982a). Several books and reviews have been published on their chemistry, metabolism, toxicology and mechanism of action (O’Brien, 1960; 1967; Heath, 1961; Koelle, 1963; Casida, 1964; Karczmar et al., 1970; O’Brien and Yamamoto, 1970; Eto, 1974; Matsumura, 1975; Hayes, 1975; 1982; Wilkinson, 1976; Murphy, 1980; Aldridge, 1981). Organophosphorus compounds have diverse effects on both the central and peripheral nervous system (Davies, 1963; Davis and Richardson, 1980; Ecobichon, 1982b). Most of them are due to inhibition of acetylcholinesterase, the enzyme which hydrolizes the neurotransmitter acetylcholine. The biochemical mechanisms of acute cholinergic poisoning have been examined in many reviews and will be only briefly discussed. On the other hand, other aspects of the nervous system toxicity of organophosphates, such as their potential noncholinergic interactions, will be discussed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Donia, M.B. Organophosphorous ester-induced delayed neurotoxicity. Ann. Rev. Pharmacol. Toxicol. 21: 511–548 (1981).

    CAS  Google Scholar 

  • Ahmad, S. and Forgash, A.J. Nonoxidative Enzymes in the Metabolism of Insecticides. Drug Metal. Rev. 5: 141–164 (1976).

    CAS  Google Scholar 

  • Akil, H., Watson, S.J., Young, E., Lewis, M.E., Kuachaturian, H. and Walker, J.M. Endogenous opioids: Biology and Function. Ann. Rev. Neurosci. 7: 223–255 (1984).

    PubMed  CAS  Google Scholar 

  • Aldous, C.N., Farr, C.H. and Sharma, R.P. Effects of leptophos on rat brain levels and turnover rates of biogenic amines and their metabolites. Ecotoxicol. Environm. Safety 6: 570–576 (1982).

    CAS  Google Scholar 

  • Aldridge, W.N. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem. J. 53: 117–124 (1953).

    PubMed  CAS  Google Scholar 

  • Aldridge, W.N. The nature of the reaction of organophosphorus compounds and carbamates with esterases. Bull. Wld. Hlth. Org. 44: 25–30 (1971).

    CAS  Google Scholar 

  • Aldridge, W.N. Organophosphorus compounds: molecular basis for their biological properties. Sci. Prog. Oxf. 67: 131–147 (1981).

    CAS  Google Scholar 

  • Anonymous. Nomenclature of compounds containing one phosphorus atom. Chem. Eng. News 30: 4515–4526 (1952).

    Google Scholar 

  • Aquilonius, S.M. Role of acetylcholine in the central nervous system. In “Metabolic and deficiency diseases of the nervous system”, Part III, Handbook of Clinical Neurology vol. 29 (P.J. Vinken and G.W. Bruyn, Eds), North Holland, Amsterdam, 1977, pp.435–458.

    Google Scholar 

  • Augustinsson, K.B. Classification and comparative enzymology of the cholinesterases and methods for their determination. In: “Handbook der Experimentellen Pharmakologie”, vol. 15, (G.B. Koelle, Ed.), Springer-Verlag, Berlin, pp. 89–128, 1963.

    Google Scholar 

  • Augustinsson, K.B. Comparative aspects of the purification and properties of cholinesterase. Bull. Wld. Hlth, Org. 44: 81–89 (1971).

    CAS  Google Scholar 

  • Barnes, J.M. and Denz, F.A. The chronic toxicity of p-nitrophenyl diethyl thiophosphate (E.605). J. Hyg. 49: 430–441 (1951).

    CAS  Google Scholar 

  • Barnes, J.M. Psychiatric sequelae of chronic exposure to organophosphorus insecticides. Lancet II: 102–103 (1961).

    Google Scholar 

  • Baron, R.L. Delayed neurotoxicity and other consequences of organophosphate esters. Ann. Rev. Entomol. 26: 29–48 (1981).

    CAS  Google Scholar 

  • Barth, A., Schulz, H. and Neubert, K. Untersuchunger zur Reinigung and Charakterisierung der Dipeptidylaminopeptidase IV. Acta Biol. Med. Germ. 32: 157–174 (1974).

    PubMed  CAS  Google Scholar 

  • Bellet, E.M. and Casida, J.E. Bicyclic Phosphorus Esters: High toxicity without cholinesterase inhibition. Science 182: 1135–1136 (1973).

    PubMed  CAS  Google Scholar 

  • Bidstrup, P.L. Psychiatric sequelae of chronic exposure to organophosphorus insecticides. Lancet II 103 (1961).

    Google Scholar 

  • Bignami, G. Behavioral Pharmacology and Toxicology. Ann. Rev. Pharmacol. Toxicol. 16: 329–366 (1976).

    CAS  Google Scholar 

  • Bignami, G., Rosic, N., Michalek, H., Milosevic, M., and Gatti, G.L. Behavioral toxicity of anticholinesterase agents: methodological, neurochemical and neuropsychological aspects. In: “Behavioral Toxicology” (B. Weiss and V.G. Laties, Eds.), Plenum Press, NY, 1975, pp.155–215.

    Google Scholar 

  • Bloom, F.E. The Endorphins: A growing family of pharmacologically pertinent peptides. Ann. Rev. Pharmacol. Toxicol. 23: 151–170 (1983).

    CAS  Google Scholar 

  • Bodnaryk, R.P. The effects of pesticides and related compounds on cyclic nucleotide metabolism. Insect Biochem. 12: 589–597 (1982).

    CAS  Google Scholar 

  • Bombinski, T.J. and Dubois, K.P. Toxicity and mechanism of action of Di-Syston. Arch. Ind. Hlth. 17: 192–199 (1958).

    CAS  Google Scholar 

  • Bowers, M.B., Goodman, E. and Sim, V.M. Some behavioral changes in man following anticholinesterase administration. J. Nerv. Ment.Dis. 138: 383–389 (1964).

    PubMed  Google Scholar 

  • Bowery, N.G., Collins, J.F. and Hill, R.G. Bicyclic phosphorus esters that are potent convulsants and GABA antagonists. Nature 261: 601–603 (1976).

    PubMed  CAS  Google Scholar 

  • Brimblecombe, R.W. Drugs acting on central cholinergic mechanisms and affecting respiration. Pharmacol. Ther. 3: 65–74 (1977).

    CAS  Google Scholar 

  • Brimijoin, S. Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics. Prog. Neurobiol. 21: 291–322 (1983).

    PubMed  CAS  Google Scholar 

  • Brodeur, J. and Dubois, K.P. Studies on the mechanism of acquired tolerance by rats to O, O-diethyl S-2 (ethylthio) ethyl phosphorodithioate (Disyston). Arch. Int. Pharmacodyn. 149: 560–570 (1964).

    PubMed  CAS  Google Scholar 

  • Brown, D.R. and Murphy, S.D. Factors influencing dimethoate and triethyl phosphate-induced narcosis in rats and mice. Toxicol. Appl. Pharmacol. 18: 895–906 (1971).

    PubMed  CAS  Google Scholar 

  • Buccafusco, J.J. Mechanism of the clonidine-induced protection against acetylcholinesterase inhibitor toxicity. J. Pharmacol. Exp. Ther. 222: 595–599 (1982).

    PubMed  CAS  Google Scholar 

  • Buck, S.H., Walsh, J.H., Yamamura, H.I. and Burks, T.F. Neuropeptides in sensory neurons. Life Sci. 30: 1857–1866 (1982).

    PubMed  CAS  Google Scholar 

  • Bull, D.L. Metabolism of Di-Syston by Insects, Isolated Cotton Leaves and Rats. J. Econ. Entomol. 58: 249–254 (1965).

    PubMed  CAS  Google Scholar 

  • Burchfiel, J.L., Duffy, F.H. and Sim, V.M. Persistent effect of sarin and dieldrin upon the primate electroencephalogram. Toxicol. Appl. Pharmacol. 35: 365–379 (1976).

    PubMed  CAS  Google Scholar 

  • Burcher, L.L. Recent advances in histochemical techniques for the study of central cholinergic mechanisms. In: “Cholinergic Mechanisms and Psychopharmacology”, (D.J. Jenden, Ed.), Plenum Press, NY, 1978, pp. 93–124.

    Google Scholar 

  • Casida, J.E. Esterase inhibitors as pesticides. Science 146: 1011–1017 (1964).

    PubMed  CAS  Google Scholar 

  • Casida, J.E. and Sanderson, D.M. Reaction of certain phosphorothioates with alcohols and potentiation by breakdown products. J. Agr. Food Chem. 11: 91–96 (1963).

    CAS  Google Scholar 

  • Cavanagh, J.B. The significance of the “Dying-Back” process in experimental and human neurological disease. Int. Rev. Exp. Path. 3: 219–267 (1964).

    PubMed  CAS  Google Scholar 

  • Cavanagh, J.B. Peripheral neuropathy caused by toxic agents. CRC, Crit. Rev. Toxicol. 2: 365–417 (1973).

    CAS  Google Scholar 

  • Chippendale, T.J., Zawolkow, G.A., Russell, R.W. and Overstreet, D.H. Tolerance to low acetylcholinesterase levels: modification of behavior without acute behavioral change. Psychopharmacologia (Berl.) 26: 127–139 (1972).

    CAS  Google Scholar 

  • Chubb, I.W., Hodgson, A.J. and White, G.H. Acetylcholinesterase Hydrolizes Substance P. Neurosci. 5: 2065–2072 (1980).

    CAS  Google Scholar 

  • Chubb, I.W., Greenfield, S.A. and Hodgson, A.J. Is acetylcholinesterase the biggest “neuropeptide” of them all? Neurosci. Lett Suppl. 11: S6-S7 (1983b).

    Google Scholar 

  • Chubb, I.W., Ranieri, E., White, G.H. and Hodgson, A.J. The enkephalins are amongst the peptides hydrolized by purified acetylcholinesterase. Neurosci. 4: 1369–1377 (1983).

    Google Scholar 

  • Clark, G. Organophosphate insecticides and behavior: A Review Aerosp. Med. 42: 735–740 (1971).

    CAS  Google Scholar 

  • Clark, W.G. and Clark, Y.L. Changes in body temperature after administration of acetylcholine, histamine, morphine, prostaglandins and related agents. Neurosci. Biobehav. Rev. 4: 175–240 (1980)

    PubMed  CAS  Google Scholar 

  • Clement, J.G. and Copeman, H.T. Soman and Sarin induce a long-lasting naloxone-reversible analgesia in mice. Life Sci. 34: 1415–1422 (1984).

    PubMed  CAS  Google Scholar 

  • Costa, L.G. and Murphy, S.D. Passive avoidance retention in mice tolerant to the organophosphorus insecticide disulfoton. Toxicol. Appl. Pharmacol. 65: 451–458 (1982).

    PubMed  CAS  Google Scholar 

  • Costa, L.G. and Murphy, S.D. Unidirectional cross-tolerance between the carbamate insecticide propoxur and the organophosphate disulfoton in mice. Fund. Appl. Toxicol. 3: 483–488 (1983).

    CAS  Google Scholar 

  • Costa, L.G. and Murphy, S.D. Interaction between acetaminophen and organophosphates in mice. Res. Comm. Chem. Pathol. Pharmacol. 44: 389–400 (1984a).

    CAS  Google Scholar 

  • Costa, L.G. and Murphy, S.D. Tolerance to DFP-induced antinociception: lack of cross-tolerance to morphine. Toxicologist 4(1): 15 (1984b).

    Google Scholar 

  • Costa, L.G. and Murphy, S.D. Cholinergic and opiate involvement in the antinociceptive effect of diisopropylfluorophosphate. Soc. Neurosci. Abst. 10: (1984c).

    Google Scholar 

  • Costa L.G., Schwab, B.W., Hand, H. and Murphy, S.D. Reduced [3H]-quinuclidinyl benzilate binding to muscarinic receptors in disulfoton-tolerant mice. Toxicol. Appl. Pharmacol. 60: 441–450 (1981).

    PubMed  CAS  Google Scholar 

  • Costa, L.G., Schwab, B.W. and Murphy, S.D. Tolerance to anticholinesterase compounds in mammals. Toxicology 25: 79–97 (1982a).

    PubMed  CAS  Google Scholar 

  • Costa, L.G., Schwab, B.W. and Murphy, S.D. Differential alterations of cholinergic muscarinic receptors during chronic and acute tolerance to organophosphorus insecticides. Biochem. Pharmacol. 31: 3407–3413 (1982b).

    PubMed  CAS  Google Scholar 

  • Dale, H.H. The action of certain esters and ethers of choline and their relation to muscarine. J. Pharmacol. Exp. Ther. 6: 147–190 (1914).

    CAS  Google Scholar 

  • Das, M., Dixit, R., Seth, P.K. and Mukhtar, H. Glutathione-S-Transferase activity in the brain: Species, Sex, Regional and Age Differences. J. Neurochem. 36: 1439–1442 (1981).

    PubMed  CAS  Google Scholar 

  • Dauterman, W.C. Biological and Nonbiological Modifications of Organophosphorus Compounds. Bull. Wld. Hlth. Org. 44: 133–150 (1971).

    CAS  Google Scholar 

  • Davies, D.R. Neurotoxicity of organophosphorus compounds. In: “Handbuch der Experimentelien Pharmakologie”, vol. 15, (G.B. Koelle, Ed.) Springer-Verlag, Berlin, pp. 860–882 (1963).

    Google Scholar 

  • Davis, K.L. and Yamamura, H.I. Cholinergic underactivity in human memory disorders. Life Sci. 23: 1729–1734 (1978).

    PubMed  CAS  Google Scholar 

  • Davis, K.L., Berger, P.A., Hollister, L.E. and Barchas, J.D. Cholinergic involvement in mental disorders. Life Sci. 22: 1865–1872 (1978a).

    PubMed  CAS  Google Scholar 

  • Davis, K.L., Yesavage, J.A. and Berger, P.A. Possible organophosphate-induced Parkinsonism. J. Nerv. Ment. Dis. 166: 222–225 (1978b).

    PubMed  CAS  Google Scholar 

  • Davis, C.S. and Richardson, R.J. Organophosphorus Compounds. In: “Experimental and Clinical Neurotoxicology” (P.S. Spencer and H.H. Schaumburg, Eds), Williams & Wilkins, Baltimore, pp. 527–544 (1980).

    Google Scholar 

  • DeRoeth, A., Dettbarn, W.D., Rosenberg, P., Wilensky, J.G. and Wong, A. Effect of phospholine iodide on blood cholinesterase levels of normal and glaucoma subjects. Am. J. Ophtalm. 59: 586–592 (1965).

    Google Scholar 

  • Deutsch, J.A. The cholinergic synapse and the site of memory. In: “The physiological basis of memory” (J.A. Deutsch, Ed.), Academic Press, NY, pp. 59–76 (1973).

    Google Scholar 

  • Dille, J.R. and Smith, P.W. Central nervous system effects of chronic exposure to organophophate insecticides. Aerospace Med. 35: 475–478 (1964).

    Google Scholar 

  • Dudek, B.R. and Richardson, R.J. Evidence for the existence of neurotoxic esterase in neural and lymphatic tissue of the adult hen. Biochem. Pharmacol. 31: 1117–1121 (1982).

    PubMed  CAS  Google Scholar 

  • Duffel, M.W. and Gillespie, S.G. Microsomal flavin-containing monooxygenase activity in rat corpus striatum. J. Neurochem. 42: 1350–1353 (1984).

    PubMed  CAS  Google Scholar 

  • Duffy, F.H, Burchfiel, J.L, Bartels, P.H, Gaon, M. and Sim, V.M, Long term effects of an organophosphate upon the human electroencephalogram. Toxicol. Appl. Pharmacol. 47: 161–176 (1979).

    PubMed  CAS  Google Scholar 

  • Durham, W.F., Wolfe, H.R. and Quinby, G.E. Organophosphorus insecticides and mental alertness. Arch. Environm. Hlth. 10: 55–66 (1965).

    CAS  Google Scholar 

  • Eckenstein, F. and Sofroniew, M.V. Identification of central cholinergic neurons containing both choline acetyltransferase and acetylcholinesterase and of central neurons containing only acetylcholinesterase. J. Neurosci. 3: 2286–2291 (1983).

    PubMed  CAS  Google Scholar 

  • Ecobichon, D.J. Environmental dynamics and toxicokinetics of pesticides. In: “Pesticides and Neurological Diseases” (D.J. Ecobichon and R.M. Joy, Eds), CRC Press, Boca Raton, FL, pp. 15–52 (1982a).

    Google Scholar 

  • Ecobichon, D.J. Organophosphorus ester insecticides. In: “Pesticides and Neurological Diseases” (D.J. Ecobichon and R.M. Joy, Eds.), CRC Press, Boca Raton, FL, pp. 151–203 (1982b).

    Google Scholar 

  • Ehlert, F.J., Kokka, N. and Fairhurst, A.S. Altered [3H]-quinuclidinyl benzilate binding in the striatum of rats following chronic cholinesterase inhibition with diisopropylfluorophosphate. Mol. Pharmacol. 17: 24–30 (1980).

    PubMed  CAS  Google Scholar 

  • Emson, P.C. Peptides as neurotransmitter candidates in the mammalian CNS. Prog. Neurobiol. 13: 61–116 (1979).

    CAS  Google Scholar 

  • Eto, M. Organophosphorus pesticides: Organic and Biological Chemistry. CRC Press, Boca Raton, FL. (1974).

    Google Scholar 

  • Eto, M., Oshima, Y. and Casida, J.E. Plasma albumin as a catalyst in cyclization of diaryl o-(alpha-hydroxy)tolyl phosphates. Biochem. Pharmacol. 16: 295–308 (1967).

    PubMed  CAS  Google Scholar 

  • Farkas, I, Desi, I. and Dura, G. Differences in the acute and chronic neurotoxic effects of chlorinated hydrocarbon, organophosphate and carbamate pesticides. In: “Adverse Effects of Environmental Chemicals and Psychotropic Drugs”, vol. 2, (M. Horvath, Ed.), Elsevier, pp. 201–213 (1976).

    Google Scholar 

  • Fenichel, G.M., Kibler, W.B., Olson, W.H. and Dettbarn, W.D. Chronic inhibition of Cholinesterase as a cause of myopathy. Neurology 22: 1026–1033 (1972).

    PubMed  CAS  Google Scholar 

  • Fernando, J.C.R., Hoskins, B. and Ho, I.K. Behavioral super-sensitivity to atropine following treatment with organophosphate Cholinesterase inhibitors. Fed. Proc. 43: 565 (1984a).

    Google Scholar 

  • Fernando, J.C.R., Hoskins, B.H. and Ho, I.K. A striatal serotoninergic involvement in the behavioral effects of anticholinesterase organophosphates. Eur. J. Pharmacol. 98: 129–132 (1984b).

    PubMed  CAS  Google Scholar 

  • Fiamberti, A.M. Riv. Pat. Nerv. Ment. 66: 1 (1946).

    Google Scholar 

  • Fiscus, R.R. and Van Meter, W.G., Effects of parathion on turnover and endogenous levels of norepinephrine and dopamine in rat brain. Fed. Proc. 36: 951 (1977).

    Google Scholar 

  • Fisher, E.B. and Van Wazer, J.R. Uses of organic phosphorus compounds. In: “Phosphorus and its compounds”, vol.II (J.R. Van Wazer, Ed.), Interscience Publishers, NY, pp. 1897–1936, (1961).

    Google Scholar 

  • Fonnum, F. Review of recent progress in the synthesis, storage and release of acetylcholine. In: “Cholinergic Mechanisms” (P.G. Waser, Ed.), Raven Press, NY, pp. 145–160 (1975).

    Google Scholar 

  • Freed, V.H., Matin, M.A., Fang, S.C. and Kar, P.P. Role of striatal dopamine in delayed neurotoxic effects of organophosphorus compounds. Eur. J. Pharmacol. 35: 229–232 (1976).

    PubMed  CAS  Google Scholar 

  • Fukuto, T.R. and Metealf, R.L. Metabolism of insecticides in plants and animals. Ann. N.Y. Acad. Sci. 160: 97–113 (1969).

    PubMed  CAS  Google Scholar 

  • Gardner, R., Ray, R., Frankenheim, J., Wallace, K., Loss, M. and Robichaud, R. A possible mechanism for diisopropylfluorophosphate-induced memory loss in rats. Pharmacol. Biochem. Behav. 21: 43–46 (1984).

    PubMed  CAS  Google Scholar 

  • Gershon, S. and Shaw, F.H. Psychiatric sequelae of chronic exposure to organophosphorus insecticides. Lancet I: 1371–1374 (1961).

    Google Scholar 

  • Giardini, V. Meneguz, A., Amorico, L., DeAcetis, L. and Bignami, G. Behaviorally augmented tolerance during chronic Cholinesterase reduction by paraoxon. Neurobehav. Toxicol. Teratol. 4: 335–345 (1982).

    PubMed  CAS  Google Scholar 

  • Gilbert, R.F.T. and Emson, P.C. Neuronal coexistence of peptides with other putative transmitters. In: “Handbook of Psychopharmaco logy”, vol. 16 (L.L. Iversen, S.D. Iversen and S.H. Snyder, Eds.), Plenum Press, NY, pp. 519–556, (1983).

    Google Scholar 

  • Golz, H.H. Psychiatric sequelae of chronic exposure to organophosphorus insecticides. Lancet II: 369–370 (1961).

    Google Scholar 

  • Gorenstein, C. and Snyder, S.H. Enkephalinases. Proc. R. Soc. Lond. B 210: 123–132 (1980).

    PubMed  CAS  Google Scholar 

  • Graf, M.V. and Kastin, A.J. Delta-Sleep-Inducing Peptide (DSIP): A Review. Neurosci. Biobehav. Rev. 8: 83–93 (1984).

    CAS  Google Scholar 

  • Greenfield, S.A., Cheramy, A., Leviel, V. and Glowinski, J. In vivo release of acetylcholinesterase in the cat substantiae nigrae and caudate nuclei. Nature 284: 355–357 (1980).

    PubMed  CAS  Google Scholar 

  • Greenfield, S.A., Chubb, I.W., Grunewald, R.A., Henderson, Z., May, J., Portnoy, S., Weston, J. and Wright, M.C. A non-cholinergic function for acetylcholinesterase in the substantia nigra: behavioral evidence. Exp. Brain Res. 54: 513–520 (1984).

    PubMed  CAS  Google Scholar 

  • Grob, D. and Harvey, A.M. The effects and treatment of nerve gas poisoning. Am. J. Med. 14: 52–63 (1953).

    PubMed  CAS  Google Scholar 

  • Hajjar, N.P. and Hodgson, E. Flavin adenine dinucleotide-dependent monooxygenase: Its role in sulfoxidation of pesticides in mammals. Science 209: 1134–1136 (1980).

    PubMed  CAS  Google Scholar 

  • Hammond, P.S., Braunstein, H., Kennedy, J.M., Badawy, S.M.A. and Fukuto, T.R. Mode of action of the delayed toxicity of 0, 0, S-trimethyl phosphorothioate in the rat. Pest. Biochem. Physiol. 18: 77–89 (1982).

    CAS  Google Scholar 

  • Hayes, W.J. Toxicology of Pesticides. Williams and Wilkins, Baltimore, pp. 580 (1975).

    Google Scholar 

  • Hayes, W.J. Pesticides Studied in Man. Williams and Wilkins, Baltimore, pp.672 (1982).

    Google Scholar 

  • Heath, D.F. Organophosphorus Poisons (Anticholinesterases and Related Compound), Pergamon Press, London, pp.338–339 (1961).

    Google Scholar 

  • Hirshberg, A. and Lerman, Y. Clinical problems in organophosphate insecticide poisoning: the use of a computerized information system. Fund. Appl. Toxicol. 4: S209-S214 (1984).

    CAS  Google Scholar 

  • Hokfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J.M. and Schultzberg, M. Peptidergic neurones. Nature 284: 515–521 (1980).

    PubMed  CAS  Google Scholar 

  • Hollingsworth, P.J., Richardson, R.J. and Smith, C.B. Triorthocresyl phosphate increases alpha2 adrenoceptors in specific areas of the rat brain. Toxicologist 2(2): 223 (1982).

    Google Scholar 

  • Holmes, J.H. and Gaon, M.D. Observations on acute and multiple exposure to anticholinesterase agents. Trans. Am. Clin. Climat. Ass. 68: 86–103 (1957).

    CAS  Google Scholar 

  • Holmstedt, B. Distribution and determination of cholinesterases in mammals. Bull. Wld. Hlth. Org. 44: 99–107 (1971).

    CAS  Google Scholar 

  • Holt, T.M. and Hawkins, R.K. Rat hippocampal norepinephrine response to Cholinesterase inhibition. Res. Comm. Chem. Pathol. Pharmacol. 20:239–251 (1978).

    CAS  Google Scholar 

  • Hopkins, A.P. Peripheral neuropathy due to industrial agents. In: “Peripheral Neuropathy” (P.J. Dyck, P.K. Thomas and E.H. Lambert, Eds.), W.B. Sanders, Philadelphia, pp. 1207–1226 (1975).

    Google Scholar 

  • Hoskin, F.C.G. Diisopropylphosphofluoridate and Tabun: Enzymatic hydrolisis and nerve function. Science 172: 1243–1245 (1971).

    PubMed  CAS  Google Scholar 

  • Imai, H. Toxicity of organophosphorus pesticide (Fenthion) on the retina. Correlative study especially on its residue action on the retina, liver and blood cholinesterase activities and on electroretinogram. Acta. Soc. Ophthalmol. Japon. 79: 1067–1076 (1975).

    CAS  Google Scholar 

  • Imai, H., Miyata, M., Uga, S. and Ishikawa, S. Retinal degeneration in rats exposed to an organophosphate pesticide (Fenthion). Env. Res. 30: 453–465 (1983).

    CAS  Google Scholar 

  • Ireson, J.D., A comparison of the antinociceptive actions of cholinomimetic and morphine-like drugs. Br. J. Pharmacol. 40: 92–101 (1970).

    PubMed  CAS  Google Scholar 

  • Ishikawa, S. Chronic optico-neuropathy due to environmental exposure of organophosphate pesticides (Saku disease). Clinical and experimental study. Acta Soc. Ophthalmol. Japon. 77–1835-1886 (1973).

    CAS  Google Scholar 

  • Ishikawa, S. and Miyata, M. Development of myopia following chronic organophosphate pesticide intoxication: an epidemiological and experimental study. In: “Neurotoxicity of the Visual System” (W.H. Merigan and B. Weiss, Eds.), Raven Press, NY, pp. 233–254 (1980).

    Google Scholar 

  • Iversen, L.L. Nonopioid neuropeptides in mammalian CNS. Ann. Rev. Pharmacol. Toxicol. 23: 1–27 (1983).

    CAS  Google Scholar 

  • Johnson, A.R. and Erdos, E.G. Inactivation of substance P by cultured human endothelial cells. In: “Substance P” (U.S von Euler and B. Pernow, Eds.) Raven Press, NY, 1977, pp. 253–260.

    Google Scholar 

  • Johnson, M.K. Organophosphorus esters causing delayed neurotoxic effects: Mechanism of action and structure/activity studies. Arch. Toxicol. 34:259–288 (1975a).

    PubMed  CAS  Google Scholar 

  • Johnson, M.K. The delayed neuropathy caused by some organophosphorous esters: Mechanism and challenge. CRC, Crit. Rev. Toxicol. 3: 289–316 (1975b).

    CAS  Google Scholar 

  • Johnson, M.K. The mechanism of delayed neuropathy caused by some organophosphorous esters: using the understanding to improve safety. J. Environ. Sci. Health, B15: 823–841 (1980a).

    CAS  Google Scholar 

  • Johnson, M.K. Organophosphate neuropathy: Progress in understanding. In: “Advances in Neurotoxicology” (L. Manzo, Ed.), Pergamon Press, Oxford, 1980, pp. 223–235.

    Google Scholar 

  • Johnson, M.K. The target of initiation of delayed neurotoxicity by organophosphorous esters: Biochemical studies and toxicological applications. In: “Reviews in Biochemical Toxicology”, vol. 4 (E. Hodgson, J.R. Bend and R.M. Philpot, Eds), Elsevier, NY, 1982, pp. 141–212.

    Google Scholar 

  • Jouvet, M. Cholinergic mechanisms and sleep. In: “Cholinergic Mechanisms” (P.G. Waser, Ed.), Raven Press, NY, pp. 455–476 (1975).

    Google Scholar 

  • Kant, G.J., Kenion, C.C. and Meyerhoff, J.L. Effects of diisopropylfluorophosphate and other cholinergic agents on release of endogenous dopamine from rat brain striatum in vitro. Biochem. Pharmacol. 33: 1823–1825 (1984).

    PubMed  CAS  Google Scholar 

  • Kar, P.P. and Matin, M.A. Possible role of gamma-aminobutyric acid in paraoxon-induced convulsions. J. Pharm. Pharmacol. 24: 996–997 (1972).

    PubMed  CAS  Google Scholar 

  • Karczmar, A.G. Is the central cholinergic nervous system overexploited? Fed. Proc. 28: 147–157 (1969).

    PubMed  CAS  Google Scholar 

  • Karczmar, A.G. Brain acetylcholine and seizures. In: “Psychobiology of convulsive therapy” (M. Fink, S. Kety, J. McGaugh and T. A. Williams, Eds), John Wiley & Sons, New York, pp. 251–270 (1974).

    Google Scholar 

  • Karczmar, A.G. Cholinergic influences on behavior. In “Cholinergic Mechanisms” (P.G. Waser, Ed.), Raven Press, NY, pp. 501–529 (1975).

    Google Scholar 

  • Karczmar, A.G. Acute and long lasting central actions of organophosphorus agents. Fund. Appl. Toxicol. 4: S1-S17 (1984).

    CAS  Google Scholar 

  • Karczmar, A.G., Usdin, E. and Wills, J.H. Anticholinesterase Agents. Pergamon Press, Oxford (1970).

    Google Scholar 

  • Kato, T., Nakano, T., Kojima, K., Nagatsu, T. and Sakakibara, S. Changes in prolyl endopeptidase during maturation of rat brain and hydrolisis of substance P by the purified enzyme. J. Neurochem. 35: 527–535 (1980).

    PubMed  CAS  Google Scholar 

  • Kiss, Z. and Fazekas, T. Arrhythmias in organophosphate poisoning. Acta Cardiol. 34: 323–330 (1979).

    PubMed  CAS  Google Scholar 

  • Koehn, G.L. and Karczmar, A.G. Effect of diisopropyl phosphofluoridate on analgesia and motor behavior in the rat. Prog. Neuro-Psychopharmacol. 2: 169–177 (1978).

    CAS  Google Scholar 

  • Koehn, G.L., Henderson, G. and Karczmar, A.G. Diisopropyl phosphofluoridate-induced antinociception: possible role of endogenous opioids. Eur. J. Pharmacol. 61: 167–173 (1980).

    PubMed  CAS  Google Scholar 

  • Koelle, G.B. (Ed.) Cholinesterases and Anticholinesterase Agents Springer Verlag, Berlin (1963).

    Google Scholar 

  • Korsak, R.J. and Sato, M.M. Effects of chronic organophosphate pesticide exposure on the central nervous system. Clin. Toxicol. 11: 83–95 (1977).

    PubMed  CAS  Google Scholar 

  • Krieger, D. Brain Peptides: what, where and why? Science 222: 975–985 (1983).

    PubMed  CAS  Google Scholar 

  • Kulkarni, A.P. and Hodgson, E. Metabolism of insecticides by mixed function oxidase systems. Pharmacol. Ther. 8: 379–475 (1980).

    PubMed  CAS  Google Scholar 

  • Lee, C.M., Sandberg, B.E.B., Hanley, M.R. and Iversen, L.L. Purification and characterization of a membrane-bound substance P-degrading enzyme from human brain. Eur. J. Biochem. 114: 315–327 (1981).

    PubMed  CAS  Google Scholar 

  • Lee, T.P., Kuo, J.F. and Greengard, P. Role of muscarinic cholinergic receptors in regulation of guanosine 3’51cyclic monophosphate content in mammalian brain, heart, muscle and intestinal smooth muscle. Proc. Natl. Acad. Sci. USA 69: 3287–3291 (1972).

    PubMed  CAS  Google Scholar 

  • Lehmann, J. and Fibiger, H.C. Acetylcholinesterase and the cholinergic neuron. Life Sci. 25: 1939–1947 (1979).

    PubMed  CAS  Google Scholar 

  • Lequesne, P.M. Neurotoxic substances. In: “Modern Trends in Neurology”, Vol. 6 (D. Williams, Ed.), Butterworth, London, pp. 83–97 (1975).

    Google Scholar 

  • Lerman, Y., Hirshberg, A. and Shteger, Z. Organophosphate and carbamate pesticide poisoning: the usefulness of a computerized clinical information system. Am. J. Ind. Med. 6: 17–26 (1984).

    PubMed  CAS  Google Scholar 

  • Levin, H.S. Behavioral effects of occupational exposure to organophosphate pesticides. In: “Behavioral Toxicology. Early detection of occupational hazards” (C. Xintaras, B.L. Johnson and I. deGroot, Eds.), US Department of Health, Education and Welfare, pp. 154–164 (1974).

    Google Scholar 

  • Levin, H.S., Rodnitzky, R.L. and Mick, D.L. Anxiety associated with exposure to organophosphate compounds. Arch. Gen. Psychiat. 33: 225–228 (1976).

    PubMed  CAS  Google Scholar 

  • Levine, B.S. and Murphy, S.D. Esterase inhibition and reactivation in relation to piperonyl butoxidephosphorothionate interactions. Toxicol. Appl. Pharmacol. 40: 379–391 (1977).

    PubMed  CAS  Google Scholar 

  • Lipp, J.A. Effect of Benzodiazepine derivatives on Soman-induced seizure activity and convulsions in the monkey. Arch. Int. Pharmacodyn. 202: 244–251 (1973).

    PubMed  CAS  Google Scholar 

  • Lippa, A.S., Pelham, R.W., Beer, B., Critchett, D.J., Dean, R.L. and Bartus, R.T. Brain cholinergic disfunction and memory in aged rats. Neurobiol. Aging 1: 13–19 (1980).

    PubMed  CAS  Google Scholar 

  • Lockridge, O. Substance P hydrolyis by human serum cholinesterase. J. Neurochem. 39: 106–110 (1982).

    PubMed  CAS  Google Scholar 

  • Lotti, M., Becker, C.E. and Aminoff, M.J. Organophosphate polyneuropathy: pathogenesis and prevention. Neurology (Cleveland) 34: 658–662 (1984).

    CAS  Google Scholar 

  • Lundy, P.M. and Magor, G.F., Cyclic GMP concentrations in cerebellum following organophosphate administration. J. Pharm. Pharmacol. 30: 251–252 (1978).

    PubMed  CAS  Google Scholar 

  • Lundy, P.M. and Shaw, R.K. Modification of cholinergically induced convulsive activity and cyclic GMP levels in the CNS. Neuropharmacol. 22: 55–63 (1983).

    CAS  Google Scholar 

  • Lundy, P.M., Magor, G. and Shaw, R.K. Gamma Aminobutyric acid metabolism in different areas of rat brain at the onset of Soman-induced convulsions. Arch. Int. Pharmacodyn. Ther. 234: 64–73 (1978).

    PubMed  CAS  Google Scholar 

  • Main, A.R. Affinity and phosphorylation constants for the inhibition of esterases by organophosphates. Science 144: 992–993 (1964).

    PubMed  CAS  Google Scholar 

  • Mao, C.C., Guidotti, A. and Costa, E. The regulation of cyclic guanosine monophosphate in rat cerebellum: possible involvement of putative amino acid neurotransmitters. Brain Res. 79: 510–514 (1974).

    PubMed  CAS  Google Scholar 

  • Massoulie1’ J. and Bon, S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Ann. Rev. Neurosci. 5: 57–106 (1982).

    Google Scholar 

  • Matin, M.A. and Kar, P.P. Further studies on the role of gamma-aminobutyric acid in paraoxon-induced convulsions. Eur. J. Pharmacol. 21: 217–221 (1973).

    PubMed  CAS  Google Scholar 

  • Matsas, R., Fulcher, I.S., Kenny, A.J. and Turner, A.J. Substance P and leu-enkephalin are hydrolized by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc. Natl. Acad. Sci. USA 80: 3111–3115 (1983).

    PubMed  CAS  Google Scholar 

  • Matsumura, F. Toxicology of Insecticides. Plenum Press, NY (1975).

    Google Scholar 

  • Mattson, H., Brandt, K. and Heilbronn, E. Bicyclic phosphorus esters increase the cyclic GMP level in rat cerebellum. Nature 268: 52–53 (1977).

    Google Scholar 

  • Mazur, A. An enzyme in animal tissues capable of hydrolyzing the phosphorus-fluorine bond of alkyl fluorophosphates. J. Biol. Chem. 164: 271–289 (1946).

    PubMed  CAS  Google Scholar 

  • Meites, J. and Sonntag, W.E. Hypothalamic hypophysiotropic hormones and neurotransmitter regulation: current views. Ann. Rev. Pharmacol. Toxicol. 21: 295–322 (1981).

    CAS  Google Scholar 

  • Metcalf, D.R. and Holmes, J.H. EEG, psychological and neurological alterations in humans with organophosphorus exposure. Ann. NY Acad. Sci. 160: 357–365 (1969).

    PubMed  CAS  Google Scholar 

  • Metcalf, R.L., Fukuto, T.R. and March, R.B. Plant metabolism of Dithio-Systox and Thimet. J. Econ. Entomol. 50: 338–345 (1957).

    CAS  Google Scholar 

  • Millar, T.J. and Chubb, I.W. Treatment of sections of chick retina with acetylcholinesterase increases the enkephalin and substance P immunoreactivity. Neurosci. 12: 441–451 (1984).

    CAS  Google Scholar 

  • Misra, V.K., Nag, D., Misra, N.K. and Krishna Murti, C.R. Macular degeneration associated with chronic pesticide exposure. Lancet I: 288 (1982).

    Google Scholar 

  • Moriya, M., Ohta, T., Watanabe, K., Miyazawa, T., Kato, K. and Shirasu, Y. Further mutagenicity studies on pesticides in bacterial reversion assay systems. Mutat. Res. 116: 185–216 (1983).

    PubMed  CAS  Google Scholar 

  • Moss, D.E. and Deutsch, J.A. Review of cholinergic mechanisms and memory. In: “Cholinergic Mechanisms” (P.G. Waser, Ed.), Raven Press, NY, pp. 483–492 (1975).

    Google Scholar 

  • Moss, R.L. and Dudley, C. The challenge of studying the behavioral effects of neuropeptides. In: “Handbook of Neuropharmacology”, vol. 18 (L.L. Iversen, S.D. Iversen and S.H. Snyder, Eds.), Plenum Press, NY, pp. 397–454 (1984).

    Google Scholar 

  • Motoyama, N. and Dauterman, W.C. Glutathione S-transferases: their role in the metabolism of organophosphorus insecticides. In: “Reviews in biochemical Toxicology”, vol. 2 (E. Hodgson, J.R. Bend and R.M. Philpot, Eds.), Elsevier, pp. 49–69 (1980).

    Google Scholar 

  • Munsat, T.L. Anticholinesterase abuse in myasthenia gravis. J. Neurol. Sci. 64: 5–10 (1984).

    PubMed  CAS  Google Scholar 

  • Murphy, S.D. Mechanisms of pesticide interactions in vertebrates. Residue Rev. 25: 201–221 (1969).

    PubMed  CAS  Google Scholar 

  • Murphy, S.D. Pesticides. In: “Toxicology: The Basic Science of Poisons” (J. Doull, C.D. Klaassen and M.O. Amdur, Eds.), MacMillan, NY, pp. 357–408 (1980).

    Google Scholar 

  • Murphy, S.D., Costa, L.G. and Schwab, B.W. Pesticide interactions and development of tolerance. In: “Effects of chronic exposures to pesticides on animal systems” (J.E. Chambers and J.D. Yarbrough, Eds.), Raven Press, NY, pp. 227–242 (1982).

    Google Scholar 

  • Namba, T., Nolte, C.T. Jackrel, J. and Grob, D. Poisoning due to organophosphate insecticides. Acute and chronic manifestations. Am. J. Med. 50: 475–492 (1971).

    PubMed  CAS  Google Scholar 

  • Nathanson, J.A. Cyclic nucleotides and nervous system function. Physiol. Rev. 57: 157–256 (1977).

    PubMed  CAS  Google Scholar 

  • Norman, B.J. and Neal, R.A. Examination of the metabolism in vitro of parathion (diethyl p-nitrophenyl phosphorothionate) by rat lung and brain. Biochem. Pharmacol. 25: 37–45 (1976).

    PubMed  CAS  Google Scholar 

  • O’Brien, R.D. Toxic Phosphorus Esters. Academic Press, NY, pp. 434 (1960).

    Google Scholar 

  • O’Brien, R.D. Insecticides: Action and Metabolism. Academic Press, NY, (1967).

    Google Scholar 

  • O’Brien, R.D. and Yamamoto, I. (Eds.) Biochemical Toxicology of Insecticides. Academic Press, NY, (1970).

    Google Scholar 

  • Ohto, K. Long term follow up study of chronic organophosphate pesticide intoxication (Saku disease) with special reference with retinal pigmentary degeneration. Acta Soc. Ophthalmol. Japon. 78: 237–243 (1974).

    Google Scholar 

  • Olianas, M.C., Onali, P., Schwartz, J.P., Neff, N.H. and Costa, E. The muscarinic receptor adenylate cyclase complex of rat striatum: desensitization following chronic inhibition of acetylcholinesterase activity. J. Neurochem. 42: 1439–1443 (1984).

    PubMed  CAS  Google Scholar 

  • Olney, J.W., DeGubareff, T. and Labruyere, J. Seizure-related brain damage induced by cholinergic agents. Nature 301: 520–522 (1983).

    PubMed  CAS  Google Scholar 

  • O’Neill, J.. Non-cholinesterase effects of anticholinesterases Fund. Appl. Toxicol. 1: 154–160 (1981).

    Google Scholar 

  • Ozoe, Y., Mochida, K. and Eto, M. Reaction of toxic bicyclic phosphates with acetylcholinesterases and alpha-chimotrypsin. Agric. Biol. Chem. 46: 2527–2531 (1982).

    CAS  Google Scholar 

  • Perold, J.G. and Bezuidenhout, D.J.J. Chronic Organophosphate Poisoning. S.A. Med. J. 57: 7–9 (1980).

    CAS  Google Scholar 

  • Petajan, J.H. Vorhees, K.J., Packham, S.C., Baldwin, R.C., Einhorn, I.N., Grunnet, M.L., Dinger, B.G. and Birky, M.M. Extreme Toxicity from combustion products of a fire-retarded polyurethane foam. Science 187: 742–744 (1975).

    PubMed  CAS  Google Scholar 

  • Philippu, A. Involvement of cholinergic systems of the brain in the central regulation of cardiovascular functions. J. Auton. Pharmacol. 1: 321–330 (1981).

    PubMed  CAS  Google Scholar 

  • Pinsky, C., Dua, A.K. and La Bella, F.S. Phenylmethylsulfonyl fluoride (PMSF) given systemically produces naloxone-reversible analgesia and potentiates effects of beta-endorphin given centrally. Life Sci. 31: 1193–1196 (1982).

    PubMed  CAS  Google Scholar 

  • Playfer, J.R., Eze, K.C., Bullen, M.F. and Evans, D.A.P. Genetic polymorphism and interethnic variability of plasma paraoxonase activity. J. Med. Genet. 13: 337–342 (1976).

    PubMed  CAS  Google Scholar 

  • Prioux-Guyonneau, M., Coudray-Lucas, C., Coq, H.M., Cohen, Y. and Wepierre, J. Modification of rat brain 5-Hydroxytryptamine metabolism by sublethal doses of organophosphate agents. Acta Pharmacol. Toxicol. 51: 21982).

    Google Scholar 

  • Proctor, N.G., Moscioni, A.D. and Casida, J.E. Chicken embryo NAD levels lowered by teratogenic organophosphorus and methylcarbamate insecticides in duck embryos. Biochem. Pharmacol. 25: 757–762 (1976).

    PubMed  CAS  Google Scholar 

  • Raiteri, M., Marchi, M. and Paudice, P. Adaptation of presynaptic acetylcholine autoreceptors following long-term drug treatment. Eur. J. Pharmacol. 74: 109–110 (1981).

    PubMed  CAS  Google Scholar 

  • Reiter, L., Talens, G. and Woolley, D. Acute and subacute parathion treatment: effects on cholinesterase activities and learning in mice. Toxicol. Appl. Pharmacol. 25: 582–588 (1973).

    PubMed  CAS  Google Scholar 

  • Rowntree, D.W., Nevin, S. and Wilson, A. The effects of diisopropyl-fluorophosphate in schizophrenia and manic depressive psychosis. J. Neurol. Neurosurg. Psychiat. 13: 47–62 (1950).

    PubMed  CAS  Google Scholar 

  • Russell, R.W. Behavioral aspects of cholinergic transmission. Fed. Proc. 28: 121–131 (1969).

    PubMed  CAS  Google Scholar 

  • Russell, R.W. Cholinergic substrates of behavior. In: “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, Ed.), Plenum Press, pp. 709–731 (1978).

    Google Scholar 

  • Russell, R.W. Cholinergic system in behavior: the search for mechanisms of action. Ann. Rev. Toxicol. Pharmacol. 22: 435–463 (1982).

    CAS  Google Scholar 

  • Russell, R.W., Vasquez, B.J., Overstreet, D.H. and Dalglish, F.W. Effects of cholinolytic agents on behavior following development of tolerance to low cholinesterase activity. Psychopharmacologia (Berl.) 20: 32–41 (1971).

    CAS  Google Scholar 

  • Russell, R.W., Overstreet, D.H., Cotman, C.W., Carson, V.G., Churchill, L., Dalglish, F.W. and Vasquez, B.J. Experimental tests of hypotheses about neurochemical mechanisms underlying behavioral tolerance to the anticholinesterase, diisopropyl fluorophosphate. J Pharmacol. Exp. Ther. 192: 73–85 (1975).

    PubMed  CAS  Google Scholar 

  • Russell, R.W., Carson, V.G., Booth, R.A. and Jenden, D.J. Mechanisms of tolerance to the anticholinesterase DFP: acetylcholine levels and dynamics in the rat brain. Neuropharmacol. 20: 1197–1201 (1981).

    CAS  Google Scholar 

  • Russell, R.W., Overstreet, D.H. and Netherton, R.A. Sex-linked and other genetic factors in the development of tolerance to the anticholinesterase DFP. Neuropharmacol. 22: 75–81 (1983).

    CAS  Google Scholar 

  • Sahley, T.L. and Berntson, G.G. Antinociceptive effects of central and systemic administration of nicotine in the rat. Psychopharmacol. 65: 279–283 (1979).

    CAS  Google Scholar 

  • Schwab, B.W. and Murphy, S.D. Induction of anticholinesterase tolerance in rats with doses of disulfoton that produce no cholinergic signs. J. Toxicol. Env. Hlth. 8: 199–204 (1981).

    CAS  Google Scholar 

  • Schwab, B.W., Costa, L.G. and Murphy, S.D. Muscarinic receptor alterations as a mechanism of anticholinesterase tolerance. Toxicol. Appl. Pharmacol. 71: 14–23 (1983).

    PubMed  CAS  Google Scholar 

  • Schwartz, J.C., Malfoy, B. and De La Baume, S. Biological inactivation of enkephalin and the role of enkephalin-dipeptidyl-carboxypeptidase (“enkephalinase”) as neuropeptidase. Life Sci. 29: 1715–1740 (1981).

    PubMed  CAS  Google Scholar 

  • Seiden, L.S. and Dykstra, L.A. Acetylcholine and behavior. In: “Psychopharmacology: a biochemical and behavioral approach”, Van Nostrand Reinhold Company, NY, pp. 213–242 (1977).

    Google Scholar 

  • Silver, A. The biology of cholinesterases. Elsevier, pp. 596 (1974).

    Google Scholar 

  • Sivam, S.P., Norris, J.C., Lim, D.K., Hoskins, B. and Ho, I.K. Effect of acute and chronic Cholinesterase inhibition with diisopropylfluorophosphate on muscarinic, dopamine, and GABA receptors of the rat striatum. J. Neurochem. 40: 1414–1422 (1983a).

    PubMed  CAS  Google Scholar 

  • Sivam, S.P., Nabeshima, T., Lim, D.K., Hoskins, B. and Ho, I.K. Diisopropylfluorophosphate and GABA synaptic function: effect on levels, enzymes, release and uptake in the rat striatum. Res. Comm. Chem. Pathol. Pharmacol. 42: 51–60 (1983b).

    CAS  Google Scholar 

  • Smith, M.I., Elvove, E. and Frazier, W.H. The pharmacological action of certain phenol esters, with special reference to the etiology of the so called ginger paralysis. Public Health Rep. 45: 2509–2524 (1930).

    CAS  Google Scholar 

  • Stevens, J.T., Stitzel, R.E. and McPhillips, J.J. Effects of anticholinesterase insecticides on hepatic microsomal metabolism. J. Pharmacol. Exp. Ther. 181: 576–583 (1972).

    PubMed  CAS  Google Scholar 

  • Stoller, A., Krupinski, J., Christophers, A.J. and Blanks, G.K. Organophosphorus insecticides and major mental illness. An epidemiological investigation. Lancet I: 1387–1388 (1965).

    Google Scholar 

  • Sumerford, W.T., Hayes, W.J., Johnston, J.M., Walker, K. and Spillane, J. Cholinesterase response and symptomatology from exposure to organic phosphorus insecticides. A.M.A. Arch. Ind. Hyg. Occup. Med. 7: 383–398 (1953).

    PubMed  CAS  Google Scholar 

  • Ticku, M.K. and Olsen, R.W. Cage convulsant inhibit picrotoxinin binding. Neuropharmacol. 18: 315–318 (1979).

    CAS  Google Scholar 

  • Uga, S., Ishikawa, S. and Mukuno, K. Histophathological study of canine optic nerve and retina treated by organophosphate pesticide. Invest. Ophtalmol. 16: 877–881 (1977).

    CAS  Google Scholar 

  • Vandekar, M. Anesthetic effect produced by organophosphorus compounds. Nature (London) 179: 155–156 (1957).

    Google Scholar 

  • Van Meter, W.G., Karczmar, A.G. and Fiscus, R.R. CNS effects of anticholinesterases in the presence of inhibited cholinesterases. Arch. Int. Pharmacodyn. 231: 249–260 (1978).

    PubMed  Google Scholar 

  • Wecker, L. and Dettbarn, W.D. Paraoxon-induced myopathy: muscle specificity and acetylcholine involvement. Exp. Neurol. 51: 281–291 (1976).

    PubMed  CAS  Google Scholar 

  • Wecker, L., Kiauta, T. and Dettbarn, W.D. Relationship between acetylcholinesterase inhibition and the development of a myopathy. J. Pharmacol. Exp. Ther. 206: 97–104 (1978).

    PubMed  CAS  Google Scholar 

  • Weiss, B.L., Foster, F.G. and Kupfer, D.J. Cholinergic involvement in neuropsychiatrie symdromes. In: “Biology of Cholinergic Function” (A.M. Goldberg and I. Hanin, Eds.), Raven Press, NY (1976).

    Google Scholar 

  • Whorton, M.D. and Obrinsky, D.L. Persistence of symptoms after mild to moderate acute organophosphate poisoning among 19 farm field workers. J. Toxicol. Env. Hlth. 11: 347–354 (1983).

    CAS  Google Scholar 

  • Wilkinson, C.F. (Ed.) Insecticide Biochemistry and Physiology. Plenum Press, NY (1976).

    Google Scholar 

  • Wood, J.D. The role of gamma-aminobutyric acid in the mechanism of seizures. Prog. Neurobiol. 5: 77–95 (1975).

    PubMed  CAS  Google Scholar 

  • Wooder, M.F. and Wright, A.S. Alkylation of DNA by organophosphorus pesticides. Acta Pharmacol. Toxicol. 49 (Suppl. V): 51–55 (1981).

    CAS  Google Scholar 

  • Zorn, S.H., Costa, L.G. and Murphy, S.D. Diisopropylfluorophosphate- and physostigmine-induced antinociception in mice. Toxicologist 3(1): 14 (1983).

    Google Scholar 

  • Zorn, S.H., Costa, L.G. and Murphy, S.D. Interaction between diisopropylfluorophosphate and the opiate system in mice. Toxicologist 4(1): 171 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this paper

Cite this paper

Costa, L.G. (1988). Organophosphorus Compounds. In: Galli, C.L., Manzo, L., Spencer, P.S. (eds) Recent Advances in Nervous System Toxicology. NATO ASI Series, vol 100. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0887-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0887-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8229-7

  • Online ISBN: 978-1-4613-0887-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics