Skip to main content

Fungal Elicitors of Invertebrate Cell Defense System

  • Chapter
Fungal Antigens

Abstract

Arthropods, lacking the true immunoglobulin and T-type lymphocyte system characteristic of vertebrates, possess an array of defense systems which protect them against fungal attack. Whether common defense mechanisms are possessed by the arthropod group is unclear. The defensive needs of this diverse group of organisms are extremely variable. To date, the immune responses of a relatively few species has been examined in detail. Both cellular and/or humoral (non-cellular, inducible antimicrobial substances) responses have been reported to be elicited in arthropods when challenged with pathogenic organisms. In light of the available data, considering such responses to be primitive precursors to the vertebrate recognition systems is speculative. However, the defense systems possessed by arthropods have been sufficient to insure the continued survival of this ancient and diverse group of animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Amirante and F.G. Mazzeli, 1978, Synthesis and localization of hemoagglutinins in hemocytes of the cockroach Leucophaea maderae, Dev. Comp. Immunol., 2:735.

    Article  PubMed  CAS  Google Scholar 

  2. P.B. Armstrong and J.P. Quigley, 1985, Proteinase inhibitory activity released from the horseshoe crab blood cell during exocytosis, Biochemica et Biophysica Acta 827:453–459.

    Article  CAS  Google Scholar 

  3. P.B. Armstrong, 1985, Adhesion and motility of the blood cells of Limulus, in: “Blood Cells of Marine Invertebrates: Experimental Systems in Cell Biology and Comparative Physiology”, Alan R. Liss, Inc.

    Google Scholar 

  4. P.B. Armstrong, M.T. Rossener, and J.P. Quigley, 1985, An 2-macro-globulinlike activity in the blood of chelicerate and mandibulate arthropods, J. Exp. Zool., 236:109.

    Article  Google Scholar 

  5. M. Ashida, K. Dohke, and E. Ohnishi, 1974, Activation of prephenol-oxidase III. Release of a peptide from prephenoloxidase by the activating enzyme, Biochem. Biophy. Res. Comm., 57:1089–1095.

    Article  CAS  Google Scholar 

  6. M. Ashida and K. Dohke, 1980, Activation of pro-phenoloxidase by the activating enzyme of the silkworm, Bombyx mori, Insect Biochem. 10:37–47.

    Article  CAS  Google Scholar 

  7. M. Ashida, Y. Ishizaki, and H. Iwahana, 1983, Activation of pro-phenoloxidase by bacterial cell walls or (1,3) glucans in plasma of the silkworm Bombyx mori, Biochem. Biophy. Res. Comm., 113: 562–568.

    Article  CAS  Google Scholar 

  8. M. Ashida, M. Ochiai, and H. Yoshida, 1986, (1,3) glucan receptor and peptidoglycan receptor within prophenoloxidase activating system in insects. In: Molecular Aspects of Invertebrate Immunology, ISDCJ Conference, Berlin, 20–21.

    Google Scholar 

  9. P. Azambuja, C.C. Freitas, and E.S. Garcia, 1986, Evidence and partial characterization of an inducible antibacterial factor in the haemolymph of Rhodnuis prolixus, J. Insect Physiol., 32:807–812.

    Article  Google Scholar 

  10. A. Beauvais and J.P. Latgé, 1987a, A simple medium to grow Entomophthoralean protoplasts, J. Invertebr. Pathol, (submitted).

    Google Scholar 

  11. A. Beauvais and J.P. Latgé, 1987b, Glucan synthetases of protoplastic entomophatorales, Exp. Mycol. (submitted).

    Google Scholar 

  12. D.G. Boucias and J.C. Pendland, 1986, Detection of protease inhibitors in the hemolymph of resistant Anticarsia gemmatalis which are inhibitory to the entomopathogenic fungus, Nomuraea rileyi, Experientia, (in press).

    Google Scholar 

  13. H.G. Boman, I. Faye, P.V. Hofsten, K. Kockum, J.Y. Lee, K.G. Xanthopoulos, H. Bennish, A. Engstrom, B.R. Merrifield, and D. Andrau, 1986, Antibacterial immune proteins in insects: a review of some current perspectives, in “Immunity in Invertebrates, M. Brehelin, ed., Springer-Verlag, NY.

    Google Scholar 

  14. R. Brambl and W. Gade, 1985, Plant seed lectins disrupt growth of germinating fungal spores, Phsiol. Plant, 64:402.

    Article  Google Scholar 

  15. M. Brehelin and J.A. Hoffman, 1980, Phagocytosis of inert particles in Locusta migratoria and Galleria mellonella: study of ultrastructure and clearance, J. Insect Physiol., 23:103–111.

    Article  Google Scholar 

  16. P. Cenini, 1983, Comparative studies of haemagglutinins and haemolysins in an annelid and a primitive crustacean, Dev. Comp. Immunol., 7:637–640.

    Article  CAS  Google Scholar 

  17. H. Ceri, 1984, Lectin activity in adult and larval Drosophila melanogaster, Insect Biochem., 14:547–549.

    CAS  Google Scholar 

  18. G.T. Cole and Y. Nozawa, 1981, Dimorphism in: “Biology of Conidial Fungi, Vol. 1, G.T. Cole and B. Kendrick, eds., Academic Press, NY, 97–133.

    Google Scholar 

  19. J.W. Cornick and J.E. Stewart, 1968, Interaction of the pathogen Gaffikya homari with natural defense mechanisms of Homarus americanus, J. Fish. Res. Board, Can., 25:695–709

    Article  Google Scholar 

  20. P.J. DeVerno, J.S. Chadwick, W.P. Aston, and G.B. Dunphy, 1984, The invitro generation of an antibacterial activity from the fat body and hemolymph of non-immunized larvae of Galleria mellonella, Dev. Comp. Immunol., 8:537–546.

    Article  PubMed  Google Scholar 

  21. P.E. Dunn, Dai, Wei, M.R. Kanost, and C. Geng, 1985, Soluble peptido-glycan fragment stimulate antibacterial protein synthesis by fat body from larvae of Manduca sexta, Dev. Comp. Immunol., 9:559–568.

    Article  PubMed  CAS  Google Scholar 

  22. G.B. Dunphy and R.A. Nolan, 1980, Response of Eastern hemlock looper hemocytes to selected stages of Entomophthora egressa and other foreign particles, J. Invertebr. Pathol., 36:71–84.

    Article  Google Scholar 

  23. G.B. Dunphy and R.A. Nolan, 1981, A study of the surface proteins of Entomophthora egressa protoplasts and of larval spruce budworm hemocytes, J. Invertebr. Pathol., 38:352–361.

    Article  CAS  Google Scholar 

  24. G.B. Dunphy and R.A. Nolan, 1982, Cellular immune responses of spruce budworm larvae to Entomophthora egressa protoplasts and other test particles, J. Invertebr. Pathol., 39:81–92.

    Article  Google Scholar 

  25. M. Eguchi, 1982, Inhibition of the fungal protease by haemolymph protease inhibitors of the silkworm Bombyx mori L. (Lepidoptera: Bombycidae), Appl. Ent. Zool., 17(4):589–590.

    CAS  Google Scholar 

  26. M. Eguchi and M. Kanbe, 1982, Changes in haemolymph protease inhibitors during metamorphosis of the silkworm Bombyx mori L. (Lepidoptera; Bombycidae), Appl. Ent. Zool., 17(2):179–187.

    CAS  Google Scholar 

  27. M. Eguchi, I. Haneda, and A. Iwamoto, 1982, Properties of protease inhibitors form the haemolymph of silkworms, Bombyx mori, Antheraea pernyi and philosamia Cynthia Ricini, Comp. Biochem. Physiol., 71B:569.

    CAS  Google Scholar 

  28. M. Eguchi, K. Ueda, and M. Yamashita, 1984, Genetic variants of protease inhibitors against fungal protease and chymotrypsin from hemolymph of the silkworm, Bombyx mori, Biochem. Genet., 22:1093–1102.

    CAS  Google Scholar 

  29. I. Faye, A. Pye, T. Rasmuson, H.G. Boman, and I.A. Boman, 1975, II.Simultaneous induction of antibacterial activity and selective synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cercropia and Samia cynthia, Infect. Immunol., 12: 1426–1438.

    CAS  Google Scholar 

  30. P. Gotz and A. Vey, 1974, Humoral encapsulation in Diptera (Insecta):defence reactions of Chironomus larvae against fungi, Parasitology, 68:192–205.

    Google Scholar 

  31. P. Gotz, 1986, Encapsulation in arthropods, in: “Immunity in Inverte brates”, M. Brehelin, ed., Springer-Verlag, NY.

    Google Scholar 

  32. S.G.S. Gunnarsson and A.M. Lackie, 1985, Hemocytic aggregation in Schistocerca gregaria and Periplaneta americana as a response to injected substances of microbial origin, J. Invertebr. Pathol., 46:312–319.

    Article  Google Scholar 

  33. R.A. Hall and J.P. Latg£, 1980, Etude de quelques facteurs stimulant la formation in vitro de blastospores de Verticillium lecanii (Zimm) C.R. Viegas, Acad. Sci., Paris, 291D, 75–78.

    Google Scholar 

  34. R.A. Hall and K. Soderhall, 1982, Purification and properties of a protease inhibitor from crayfish hemolymph, J. Invertebr. Pathol., 39:29–37.

    Article  Google Scholar 

  35. R.A. Hall and K. Soderhall, 1983, Isolation and properties of a protease inhibitor in crayfish (Astacus astacus) cuticle, Comp. Biochem. Physiol., 76B:699–702.

    Google Scholar 

  36. K.D. Hapner, 1983, Haemagglutinin activity in the haemolymph of individual acridiae (grasshopper) specimens, 1983, J. Insect Physiol., 29:101–106.

    Article  CAS  Google Scholar 

  37. A.L. Hartman, P.A. Campbell, and C.A. Abel, 1978, An improved method for the isolation of lobster lectins, Develop. Comp. Immunol., 2:617–625.

    Article  CAS  Google Scholar 

  38. D. Hultmark, A. Engstrom, K. Andersson, H. Steiner, H. Bennich, and H.G. Boman, 1983, Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cercropia, EMBO 2:571–576.

    CAS  Google Scholar 

  39. I.M. Huxham and A.M. Lackie, 1986, A simple visual method for assessing the activation and inhibition of phenoloxidase production by insect haemocytes in vitro, J. Immunol. Methods (in press).

    Google Scholar 

  40. R. Jurenka, K. Manfredi, and K.D. Hapner, 1982, Haemagglutinin activity in Acrididae (grasshopper) haemolymph, J. Insect. Physiol., 28: 177–181.

    Article  CAS  Google Scholar 

  41. A. Kakinuma, T. Asano, H. Torii, and Y. Sugino, 1981, Gelation of Limulus amoebocyte lysate by an antitumor (1,3)-β-D-glucan, Biochem. Biophy. Res. Comm., 101:434–439.

    Article  CAS  Google Scholar 

  42. R.D. Karp, and L.A. Rheins, 1980, Induction of specific humoral immunity to soluble proteins in the American cockroach (Periplaneta americana) II. Nature of the secondary response, Dev. Comp. Immunol., 4:629–639.

    Article  PubMed  CAS  Google Scholar 

  43. R.D. Karp, 1985, Preliminary characterization of the inducible humoral factor in the American cockroach (Periplaneta americana), Dev. Comp. Immunol., 9:569–575.

    Article  PubMed  CAS  Google Scholar 

  44. H. Komano, D. Mizuno, and S. Natori, 1980, Purification of lectin induced in the hemolymph of Sarcophaga peregrina larvae on injury, J. Biol. Chem., 255:2919–2924.

    PubMed  CAS  Google Scholar 

  45. H. Komano and S. Natori, 1985, Participation of Sarcophaga peregrine humoral lectin in the lysis of sheep red blood cells injected into the abdominal cavity of larvae, Dev. Comp. Immunol., 9:31–40.

    Article  PubMed  CAS  Google Scholar 

  46. M. Kucera, 1982, Inhibition of the toxic proteases from Metarhizium anisopliae by extracts of Galleria mellonella larvae, J. Invertebr. Pathol., 40:299–300.

    Article  Google Scholar 

  47. M. Kucera, 1984, Partial purification and properties of Galleria mellonella larvae proteolytic inhibitors acting on Metarhizium anisopliae toxin protease, J. Invertebr. Pathol., 43:190–196.

    Article  CAS  Google Scholar 

  48. A. Lackie, 1986, Immune mechanisms in Invertebrate Vectors, Oxford University Press, Oxford, 300 pp.

    Google Scholar 

  49. A. Lackie, 1981, Humoral mechanisms in the immune response of insects to larvae of Hymenoplepis diminuta (Cestoda), Parasit. Immunol., 3:201.

    Article  CAS  Google Scholar 

  50. J.P. Latgé, A. Beauvais, and A. Vey, 1986, Wall synthesis in the entomophthorales and its role in the immune reaction of infected insects, in: Molecular Aspects of Invertebrate Immunology, ISDCJ, Conference, Berlin, 92–93.

    Google Scholar 

  51. J.P. Latgé and A. Beauvais, 1987, Wall composition of protoplastic entomophthorales, J. Invertebr. Pathol, (in press).

    Google Scholar 

  52. J.P. Latgé, D.G. Boucias, and B. Fournet, 1987, Structure of the extracellular polysaccharide produced by the fungus Nomuraea rileyi, Carbohydrate Res, (in press).

    Google Scholar 

  53. C. Leonard, K. Soderhall, and N.A. Ratcliffe, 1985, Studies of prophenoloxidase and protease activity of Blaberus craniifer haemocytes, Insect Biochem., 15:803–810.

    Article  CAS  Google Scholar 

  54. J.J. Marchalonis and G.M. Edelman, 1968, Isolation and characterization of a natural hemagglutinin from Limulus polyphermus, J. Mol. Biol., 32:453–465.

    Article  CAS  Google Scholar 

  55. G.P. Mead, N.A. Ratcliffe, and L.R. Renwrantz, 1986, The separation of insect haemocyte types on percoll gradients; methodology and problems, J. Insect Physiol., 32:167–177.

    Article  Google Scholar 

  56. B. Morrow, 1986, In vitro growth of the dimorphic fungal entomopathogen Nomuraea rileyi (Farlow) Samson, emphasizing protoplast production and cell wall analysis, Masters Thesis, University of Florida, Gainesville, FL, USA, 99 pp.

    Google Scholar 

  57. P. Mullainadhan, M.H. Ravindranath, R.E. Wright, and E.L. Cooper, 1984, Crustacean defense strategies I. Molecular weight dependent clearance of dyes in the mud crab, Scylla serrata(Forskal) (Portunidae: brachyura), Dev. Comp. Immunol., 8:41–50.

    Article  PubMed  CAS  Google Scholar 

  58. A.J. Nappi, 1975, Parasite encapsulation in insects, in: “Invertebrate Immunology”, K. Maramorsch, ed., Academic Press Inc., NY.

    Google Scholar 

  59. A.J. Nappi and M. Silvers, 1984, Cell surface changes associated with cellular immune reactions in Drosophila, Science, 225:1166–1168.

    Article  PubMed  CAS  Google Scholar 

  60. J.C. Pendland and D.G. Boucias, 1985, Hemagglutinin activity in the hemolymph of Anticarsia gemmatalis larvae infected with the fungus Nomuraea rileyi, Dev. Comp. Immunol., 9:21–30.

    Article  PubMed  CAS  Google Scholar 

  61. J.C. Pendland and D.G. Boucias, 1986a, Lectin binding characteristics of several entomogenous hyphomycetes: Possible relationship to insect hemagglutinins, Mycologia., 78:818–824.

    Article  CAS  Google Scholar 

  62. J.C. Pendland and D.G. Boucias, 1986b, Characteristics of a galactose-binding hemagglutinin (lectin) from hemolymph of Spodoptera exigua larvae, Dev. Comp. Immunol., 9:21–30.

    Article  Google Scholar 

  63. M.E.A. Pereira, A.F.B. Andrade, and J.M.C. Ribeiro, 1981, Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi, Science, 211:597.

    Article  PubMed  CAS  Google Scholar 

  64. M. Persson, L. Hall, and K. Soderhall, 1984, Comparison of peptidase activities in some fungi pathogenic to arthropods, J. Invertebr. Pathol., 44:342–348.

    Article  CAS  Google Scholar 

  65. J.P. Quigley and P.B. Armstrong, 1985, A homologue of a-2-macroglobulin purified from the hemolymph of the horseshoe crab Limulus polyphemus J. Biol. Chem., 260:12715–12719.

    PubMed  CAS  Google Scholar 

  66. N.A. Ratcliffe and A.F. Rowley, 1975, Cellular defense reactions of insect hemocytes in vitro: phagocytosis in a new suspension culture system, J. Invertebr. Pathol., 26:225–233.

    Article  PubMed  CAS  Google Scholar 

  67. J.A. Ratcliffe and S.J. Gagen, 1976, Cellular defense reactions of insect hemocytes in vivo: nodule formation and development in Galleria mellonella and Pieris brassicae larvae, J. Invertebr. Pathol., 28:373–382.

    Article  Google Scholar 

  68. N.A. Ratcliffe and J.B Walters, 1983, Studies on the in vivo cellular reactions of insects: clearance of pathogenic and non-pathogenic bacteria in Galleria mellonella larvae, J. Insect. Physiol, 29: 407–415.

    Article  Google Scholar 

  69. N.A. Ratcliffe, C. Leonard, and A.F. Rowley, 1984, Prophenoloxidase activation: nonself recognition and cell cooperation in insect immunity, Science, 226:557–559.

    Article  PubMed  CAS  Google Scholar 

  70. L. Renwrantz, 1983, Involvement of agglutinins (lectins) in invertebrate defense reactions: The immuno-biological importance of carbohydrate-specific binding molecules, Dev. Comp. Immunol., 7:603–608.

    Article  CAS  Google Scholar 

  71. L.A. Rheins, R.D. Karp, and A. Butz, 1980, Induction of specific humoral immunity to soluble proteins in the American cockroach (Periplaneta americana), Dev. Comp. Immunol., 4:447–458

    Article  PubMed  CAS  Google Scholar 

  72. L.A. Rheins and R.D. Karp, 1982, An inducible humoral factor in the American cockroach (Periplaneta americana): Precipitin activity that is sensitive to a proteolytic enzyme, J. Invertebr. Pathol., 40:190–196.

    Article  CAS  Google Scholar 

  73. L.A. Rheins and R.D. Karp, 1984, The humoral immune response in the American cockroach Periplaneta americana: reactivity to a defined antigen from honeybee venom, phospholipase A2, Dev. Comp. Immunol., 8:791–801.

    Article  PubMed  CAS  Google Scholar 

  74. L.A. Rheins and R.A. Karp, 1985, Ontogeny of the invertebrate humoral immune response: studies on various developmental stages of the American cockroach (Periplaneta americana), Dev. Comp. Immunol., 9:395–406.

    Article  PubMed  CAS  Google Scholar 

  75. T.M. Rizki and R.M. Rizki, 1984, The cellular defense system of Drosophila melanogaster, in: “Insect Ultrastructure Vol. 2”, R.C. King and H. Akai, Eds., Plenum, NY.

    Google Scholar 

  76. M. Robertson and J.H. Postlethwait, 1986, The humoral antibacterial response of Drosophila adults, Dev. Comp. Immunol., 10:167–179.

    Article  PubMed  CAS  Google Scholar 

  77. F.A. Robey and T-Y Lui, 1981, Limulin: A C-reactive protein from Limilus polyphemus, J. Biol. Chem., 256:969

    PubMed  CAS  Google Scholar 

  78. A.F. Rowley and N.A. Ratcliffe, 1976, The granular cells of Galleria mellonella during clotting and phagocytic reactions in vitro, Tissue and Cell, 8(3):437–446.

    Article  PubMed  CAS  Google Scholar 

  79. T. Sasaki, 1978, Chymotrypsin inhibitors from hemolymph of the silkworm, Bombyx mori, J. Biochem., 83:367–376.

    Google Scholar 

  80. T. Sasaki and K. Kobayashi, 1984, Isolation of two novel proteinase inhibitors from hemolymph of silkworm larva, Bombyx mori. Comparison with human serum proteinase inhibitors, J. Biochem., 95:1009–1017.

    PubMed  CAS  Google Scholar 

  81. S. Shimizu and M. Niwa, 1977, Lectins in the hemolymph of the Japanese horseshoe crab, Tachypleus tridentatus, Biochem., Biophys. Acta 500, FL.

    Google Scholar 

  82. V.J. Smith and K. Soderhall, 1983, β-(1,3)-glucan activation of crustacean hemocytes in vitro and in vivo, Biol. Bull., 164:299–314.

    Article  CAS  Google Scholar 

  83. V.J. Smith, K. Soderhall, and M. Hamilton, 1984, β-(1,3)-glucan induced cellular defence reactions in the shore crab, Carcinus maenas, Comp. Biochem. Physiol., 77A:635–639.

    Article  CAS  Google Scholar 

  84. K. Soderhall and T. Unestam, 1978, Activation of serum prophenoloxidase in arthropod immunity. The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenol-oxidase, Can. J. Microbiol., 25:406–414.

    Google Scholar 

  85. K. Soderhall, L. Hall, T. Unestam, and L. Nyhlen, 1979, Attachment of phenoloxidase to fungal cell walls in arthropod immunity, J. Invertebr. Pathol., 34:285–294.

    Article  Google Scholar 

  86. K. Soderhall, 1981, Fungal cell wall β-(1,3)-glucans induce clotting and phenoloxidase attachment to foreign surfaces of crayfish hemocyte lysate, Dev. Comp. Immunol., 5:565–573.

    PubMed  CAS  Google Scholar 

  87. K. Soderhall and J. Ajaxon, 1982, Effect of quinones and melanin on mycelial growth of Aphanomyces spp. and extracellular protease of Aphanomyces astaci, a parasite on crayfish, J. Invertebr. Pathol., 39:105–109.

    Article  Google Scholar 

  88. K. Soderhall, 1982a, Prophenoloxidase activating system and melanization a recognition mechanisms of arthropods? A review, Dev. Com. Immunol., 6:601–611.

    CAS  Google Scholar 

  89. K. Soderhall, 1982b, β-(1,3)-glucan enhancement of protease activity incrayfish hemocyte lysate, Comp. Biochem. Physiol., 74B:221–224.

    Google Scholar 

  90. K. Soderhall, 1986, The cellular immune system in crustaceans. In:“Fundamental and Applied Aspects of Invertebrate Pathology, eds., R.A. Samson, J.M. Vlak, and D. Peters, 4th Int. Symp., Invertebr. Pathol., Veldhoven, The Nethrlands, 417–420.

    Google Scholar 

  91. K. Soderhall and V.J. Smith, 1983, The prophenoloxidase activating system - a complement like pathway in arthropods? In: “Infection Processes of Fungi”, D.W. Roberts and J.R. Aist, eds., Rockefeller Foundation, Bellagio Conference 1983.

    Google Scholar 

  92. K. Soderhall, A. Vey, and M. Ramstedt, 1984, Hemocyte lysate enhancement of fungal spore encapsulation by crayfish hemocytes, Dev. Comp. Immunol., 8:23–29.

    Article  PubMed  CAS  Google Scholar 

  93. K. Soderhall and V.J. Smith, 1986, The prophenoloxidase activating system: the biochemistry of its activation and role in arthropod cellular immunity, with special reference to crustaceans, in: “Immunity in Invertebrates”, M. Brehelin ed., Springer-Verlag, NY.

    Google Scholar 

  94. M. Sugumaran, S.J. Saul, and N. Ramesh, 1985, Endogenous protease inhibitors prevent undesired activation of prophenolase in insect hemolymph, Biochem. Biophy. Res. Comm., 132:1124–1129.

    Article  CAS  Google Scholar 

  95. G.R. Vasta and E. Cohen, 1984, Carbohydrate specificities of Birgus latro (coconut crab) serum lectins, Dev. Comp. Immunol., 8:197–202.

    Article  PubMed  CAS  Google Scholar 

  96. G.R. Vasta and J.J. Marchalonis, 1985, Humoral and cell membrane-associated lectins from invertebrates and lower chordates: Specificity, molecular characterization and their structural relationships with putative recognition molecules from vertebrates, Dev. Comp. Immunol., 9:531–539.

    Article  PubMed  CAS  Google Scholar 

  97. A. Vey, M. Bouletreau, J.M. Quiot, and C. Vago, 1975, Etude in vitro en microcinematographie des reactions cellulaires d1invertebres vis-a-vis d1agents bacteriens et cryptogamiques, Entomophage 20: 337–351.

    Article  Google Scholar 

  98. A. Vey, 1986, Immunosuppressive effect of toxins: action of destruxinson the multicellular defence reaction of insects, Berlin ICCDI Conference.

    Google Scholar 

  99. R.W. Yeaton, 1981, Invertebrate lectins: II. Diversity of specificity, biological synthesis and function in recognition, Dev. Comp. Immunol., 5:535–545.

    PubMed  CAS  Google Scholar 

  100. R.W. Yeaton, 1982, Are invertebrate lectins primordial receptors, in: “Developmental Immunology: Clinical Problems and Aging”, Academic Press, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Boucias, D., Latgé, JP. (1988). Fungal Elicitors of Invertebrate Cell Defense System. In: Drouhet, E., Cole, G.T., de Repentigny, L., Latgé, JP., Dupont, B. (eds) Fungal Antigens. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0773-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0773-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8075-0

  • Online ISBN: 978-1-4613-0773-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics