Skip to main content

Effect of Experimental Variables on Flash Thermal Diffusivity Data Analysis

  • Chapter
Thermal Conductivity 20

Abstract

Flash thermal diffusivity data is usually analyzed with a thermal model which assumes axial heat conduction and uniform illumination of the flashed surface. For high accuracy data reduction, it becomes important to bound the errors caused by radial heat flow and by non-uniform laser beam profiles. These effects are examined analytically for a case in which the incident laser beam is confined to a radius smaller than the sample radius. The dependence of the output of an averaging detector on the magnitude of the radial heat transfer coefficient is presented and the linear dependence of radial and axial loss sensitivity coefficients is discussed. From this discussion, we conclude that inclusion of radial loss effects in analysis of the thermal response of multilayer structures is not important unless the radial loss factor is very large. Analytical results are presented for the temperature vs. time response of a two layer composite sample with interfacial thermal resistance and high thermal losses at the sample faces. The use of these results to reduce data for two multilayer samples is presented to show the utility of new data reduction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. E. Taylor, “Heat Pulse Thermal Diffusivity Measurements”, High Temperatures-High Pressures 11 43 (1979).

    CAS  Google Scholar 

  2. R. E. Taylor, K. D. Maglic, “Pulse Method for Thermal Diffusivity Measurement”, in Compendium of Thermophvsical Property Measurement Methods. Vol. I. Ed. by K. D. Maglic, A. Cezairliyan, V. E. Peletsky, Plenum Press, NY, 1984, pp 305 - 336.

    Google Scholar 

  3. R. E. Taylor, “Critical Evaluation of Flash Method for Measuring Thermal Diffusivity”, Rev. Int. Hautes Temp. Refract. 12 141 (1975).

    Google Scholar 

  4. J. A. Koski, “Improved Data Reduction Methods for Laser Pulse Diffusivity Determination with the Use of Minicomputers”, in Proc. of 8th Symposium on Thermophysical Properties, Vol. II, Ed. By J. V. Sengers, ASME, NY, 1982, pp 94 - 103.

    Google Scholar 

  5. D. A. Watt, “Theory of Thermal Diffusivity by the Pulse Technique”, Brit. J. Appl. Phys 17 231 (1966).

    Article  CAS  Google Scholar 

  6. A. Begiovanni, G. Sinicki, M. Laurent, “Heat Pulse Thermal Diffusivity Measurements-Thermal Properties, Temperature Dependence, and Non-Uniformity of Pulse Heating”, in Thermal Conductivity 18. Ed. by T. Ashworth and D. R. Smith, Plenum NY, 1985, pp 537 - 551.

    Google Scholar 

  7. K. Beedham, I. P. Dalrymple, “The Measurement of Thermal Diffusivity by the Flash Method, an Investigation into Errors Arising from the Boundary Conditions”, Rev. Int. Hautes Temp. Refract. 7 278 (1970).

    CAS  Google Scholar 

  8. J. A. McKay, J. T. Schriempf, “Corrections for Non-uniform Surface-Heating Errors in Flash-method Thermal Diffusivity Measurements”, J. Appl. Phys. 47 1668 (1976).

    Article  Google Scholar 

  9. J. A. Cape, G. W. Lehman, “Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity”, J. Appl. Phys. 34 1909 (1963).

    Article  Google Scholar 

  10. J. V. Beck, J. Arnold, Parameter Estimation in Science and Engineering. John Wiley, NY, 1977.

    Google Scholar 

  11. J. A. Koski, “Sensitivity and Accuracy Analysis of Pulse Diffusivity Measurements on Layered Samples”, in Thermal Conductivity 18.(Ref. 6 ), pp. 525 - 536

    Google Scholar 

  12. H. J. Lee, “Thermal Diffusivity in Layered and Dispersed Composites”, Doctoral Thesis in Mechanical Engineering, Purdue Univ., 1975.

    Google Scholar 

  13. A. W. Pratt, Heat Transmission in Buildings. John Wiley, NY, 1981, pp. 149 - 155.

    Google Scholar 

  14. R. L. Shoemaker, J. A. Stark, R. E. Taylor, “Thermophysical Properties of Propellants”, High Temp.-High Press. 17 429 (1985).

    CAS  Google Scholar 

  15. R. L. Shoemaker, J. A. Stark, L. G. Kosigoe, R. E. Taylor, “Thermophysical Properties of Propellants”, in Thermal Conductivity 18(Ref. 6 ), pp. 199 - 211.

    Google Scholar 

  16. L. M. Clark III, R. E. Taylor, “Radiation Loss in the Flash Method for Thermal Diffusivity”, J. Appl. Phys. 46 714 (1975).

    Article  Google Scholar 

  17. R. D. Cowan, “Pulse Method of Measuring Thermal Diffusivity at High Temperatures”, J. Appl. Phys. 34 926 (1963).

    Article  CAS  Google Scholar 

  18. M. N. Ozisik, Heat Conduction. John Wiley, NY, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Purdue Research Foundation

About this chapter

Cite this chapter

Sweet, J.N. (1989). Effect of Experimental Variables on Flash Thermal Diffusivity Data Analysis. In: Hasselman, D.P.H., Thomas, J.R. (eds) Thermal Conductivity 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0761-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0761-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8069-9

  • Online ISBN: 978-1-4613-0761-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics