Skip to main content

Morphology of vascular smooth muscle fibers and pericytes: scanning electron microscopic studies

  • Chapter
Ultrastructure of Smooth Muscle

Part of the book series: Electron Microscopy in Biology and Medicine ((EMBM,volume 8))

Abstract

Blood vessels are not simply passive conduits, but rather a system in which structure and function change gradually along the length of the vessels, from the arterial origin at the heart to the periphery, and also from the periphery to the venous end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bevan J A, Ljung B: Longitudinal propagation of myogenic activity in rabbit arteries and in the rat portal vein. Acta Physiol Scand 90: 703–715, 1974.

    Article  PubMed  CAS  Google Scholar 

  2. Altura BM: Pharmacology of venular smooth muscle: New insights. Microvasc Res 16: 91–117, 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Vanhoutte PM: Heterogeneity in vascular smooth muscle. In: Microcirculation Vol 2. G Kaley, BM Altura (eds) Baltimore: University Park Press, p 181–309, 1978.

    Google Scholar 

  4. De Mey JG, Vanhoutte PM: Heterogeneous behavior of the canine arterial and venous wall: Importance of the endothelium. Circ Res 51: 439–447, 1982.

    PubMed  Google Scholar 

  5. Rhodin JAG: Fine structure of vascular walls in mammals, with special reference to smooth muscle component. Physiol Rev 42 (Suppl 5): 48–81, 1962.

    Google Scholar 

  6. Somlyo AP, Somlyo AV: Vascular smooth muscle: I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev 20: 197–272, 1968.

    PubMed  CAS  Google Scholar 

  7. Devine CE: Vascular smooth muscle morphology and ultrastructure. In: Microcirculation, Vol 2. G Kaley, BM Altura (eds), Baltimore: University Park Press, p 3–39, 1978.

    Google Scholar 

  8. Somlyo AV: Ultrastructure of vascular smooth muscle. In: Handbook of Physiology: The Cardiovascular System 2, Vol 2: Vascular Smooth Muscle. DF Bohr, AP Somlyo, HV Sparks (eds), Bethesda, MD: American Physiological Society, p 33–67, 1980.

    Google Scholar 

  9. Rhodin JAG: Architecture of the vessel wall. In: Handbook of Physiology: The Cardiovascular System 2, Vol 2. DF Bohr, AP Somlyo, HV Sparks (eds), Bethesda, MD: American Physiological Society, p 1–31, 1980.

    Google Scholar 

  10. Zimmermann K: Die feinere Bau der Blutcapillaren. Z Anat Entwickl 68: 29–109, 1923.

    Article  Google Scholar 

  11. Majno G: Ultrastructure of the vascular membrane. In: Handbook of Physiology: Section 2, Circulation, Vol 3. WF Hamilton, P Dow (eds), Washington, DC: American Physiological Society, p 2293–2375, 1965.

    Google Scholar 

  12. Wolff JR: Ultrastructure of the terminal vascular bed as related to function. In: Microcirculation, Vol 1. G Kaley, BM Altura (eds), Baltimore, MD: University Park Press, p 95–130, 1977.

    Google Scholar 

  13. Sims DE: The pericyte — A review. Tissue Cell 18: 153–174, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Forbes MS, Rennels ML, Nelson E: Ultrastructure of pericytes in mouse heart. Am J Anat 149: 47–70, 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Le Beux YJ, Willemot J: Actin- and myosin-like filaments in rat brain pericytes. Anat Rec 190: 811–826, 1978.

    Article  PubMed  Google Scholar 

  16. Wallow IH, Burnside B: Actin filaments in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 19: 1433–1441, 1980.

    PubMed  CAS  Google Scholar 

  17. Herman IM, D’Amore PA: Microvascular pericytes contain muscle and non-muscle actins. J Cell Biol 101: 43–52, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Groschel-Stewart U: Immunochemistry of cytoplasmic contractile proteins. Int Rev Cytol 65: 193–254, 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Meyrick B, Fujiwara K, Reid L: Smooth muscle myosin in precursor and mature smooth muscle cells in normal pulmonary arteries and the effect of hypoxia. Exp Lung Res 2: 303–313, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Joyce NC, Haire MF, Palade GE: Contractile proteins in pericytes. II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations. J Cell Biol 100: 1387–1395, 1985.

    CAS  Google Scholar 

  21. Joyce NC, Haire MF, Palade GE: Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. J Cell Biol 100: 1379–1386, 1985.

    CAS  Google Scholar 

  22. Fujimoto T, Singer SJ: Immunocytochemical studies of desmin and vimentin in pericapillary cells of chicken. J Histochem Cytochem 35: 1105–1115, 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Joyce NC, DeCamilli P, Boyles J: Pericytes, like vascular smooth muscle cells, are immunocytochemically positive for cyclic GMP-dependent protein kinase. Microvasc Res 28: 206–219, 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Meyrick B, Reid L: The effect of continued hypoxia on rat pulmonary arterial circulation. Lab Invest 38: 188–200, 1978.

    PubMed  CAS  Google Scholar 

  25. Mayer S: Die Muskularisierung der capillaren Blutgefässe. Nachweis des anatomischen Substrats ihrer Kontraktilität. Anat Anz Jena Bd 21: 112–132, 1902.

    Google Scholar 

  26. Bensley RR, Vimtrup BJ: On the nature of Rouget cells of capillaries. Anat Rec 39: 37–55, 1928.

    Article  Google Scholar 

  27. Rouget C: Mémoire sur le dévelopement, la structure et les propriétés physiologiques des capillaires sanguins et lymphatiques. Arch Physiol Normale Pathol 5: 603–661, 1873.

    Google Scholar 

  28. Rouget C: Sur la contractilité des capillaires sanguins. CR Acad Sci 88: 916–918, 1879.

    Google Scholar 

  29. Weibel ER: On pericytes, particularly their existence on lung capillaries. Microvasc Res 8: 218–235, 1974.

    Article  PubMed  CAS  Google Scholar 

  30. Kuwabara T, Cogan DG: Retinal vascular patterns. VI. Mural cells of the retinal capillaries. Arch Ophthalmol 69: 492–502, 1963.

    CAS  Google Scholar 

  31. Beacham WS, Konishi A, Hunt CC: Observations on the microcirculatory bed in rat mesocecum using differential interference contrast microscopy in vivo and electron microscopy. Am J Anat 146: 385–426, 1976.

    Article  PubMed  CAS  Google Scholar 

  32. Emerman JT, Vogl AW: Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anat Rec 216: 405–415, 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Evan AP, Dail WG, Dammrose D, Palmer C: Scanning electron microscopy of cell surfaces following removal of extracellular material. Anat Rec 185: 433–446, 1976.

    Article  PubMed  CAS  Google Scholar 

  34. Evan AP: SEM of cell surfaces following HCl and collagenase treatment. In: Scanning Electron Microscopy in Cell Biology and Medicine. K. Tanaka, T Fujita (eds), Amsterdom/Tokyo: Excerpta Med./Biomed. Res Found, p 119–124, 1981.

    Google Scholar 

  35. Castenholz A: Visualization of periendothelial cells in arterioles and capillaries by scanning electron microscopy of ultrasound-treated and plastoid-injected brains in rats. Scanning Electron Microsc 1: 161–170, 1983.

    Google Scholar 

  36. Shiraishi T, Sakaki S, Uehara Y: Architecture of the media of the arterial vessels in the dog brain: A scanning electron-microscopic study. Cell Tissue Res 243: 329–335, 1986.

    Article  PubMed  CAS  Google Scholar 

  37. Murakami T: Application of the scanning electron microscope to the study of the fine distribution of the blood vessels. Arch Histol Jpn 32: 445–454, 1971.

    PubMed  CAS  Google Scholar 

  38. Anderson BG, Anderson WD: Myocardial microvas-culature studied by microcorrosion casts. Biomed Res 2 (Suppl): 209–217, 1981.

    Google Scholar 

  39. Castenholz A, Zoltzer H, Erhardt H: Structures imitating myocytes and pericytes in corrosion casts of terminal blood vessels. A methodical approach to the phenomenon of ’plastic strips’ in SEM. Mikroskopie 39: 95–106, 1982.

    CAS  Google Scholar 

  40. von Hayek H: Über die Kontraktionsfähigkeit der kleinsten Lungenarterien. Z Anat Entwickl Gesch 116: 373–376, 1952.

    Article  Google Scholar 

  41. Van Citters RL, Wagner BM, Rushmer RF: Architecture of small arteries during vasconstriction. Circ Res 10: 668–675, 1962.

    Google Scholar 

  42. Lang J: Mikroskopische Anatomie der Arterien. Angiologica 2: 225–284, 1965.

    PubMed  CAS  Google Scholar 

  43. Phelps PC, Luft JH: Electron microscopical study of relaxation and constriction in frog arterioles. Am J Anat 125: 399–428, 1969.

    Article  PubMed  CAS  Google Scholar 

  44. Fujiwara T, Uehara Y: Scanning electron microscopy of the myenteric plexus. J Electron Microsc 29: 397–400, 1980.

    CAS  Google Scholar 

  45. Fujiwara T, Uehara Y: The cytoarchitecture of the wall and the innervation pattern of the microvessels in the rat mammary gland: A scanning electron microscopic observation. Am J Anat 170: 39–54, 1984.

    Article  PubMed  CAS  Google Scholar 

  46. Fujiwara T, Uehara Y: Scanning electron microscopical study of vascular smooth muscle cells in the mesenteric vessels of the monkey: Arterial smooth muscle cells. Biomed Res 3: 649–658, 1982.

    Google Scholar 

  47. Chambers R, Zweifach BW: Topography and function of the mesenteric capillary circulation. Am J Anat 75: 173–205, 1944.

    Article  Google Scholar 

  48. Rhodin JAG: Ultrastructure of mammalian venous capillaries, venules and small collecting veins. J Ultrastruct Res 25: 452–500, 1968.

    Article  PubMed  CAS  Google Scholar 

  49. Rhodin JAG: Ultrastructure of the microvascular bed. In: The Microcirculation in Clinical Medicine. R Wells (ed), New York: Academic Press, p 13–31, 1973.

    Google Scholar 

  50. Pease DC: Arterial and arteriolar systems. Microscopic and submicroscopic anatomy. In: Blood Vessels and Lymphatics. DI Abramson, (ed), New York: Academic Press, p 12–25, 1962.

    Google Scholar 

  51. Bunce DF, II: Atlas of Arterial Histology. St. Louis: Green, 1974.

    Google Scholar 

  52. Thoma R: Über die Strömung des Blutes in der Gefässbahn und die Spannung der Gefässwand. Beitr Pathol Anat A II gem Pathol 66: 92–158, 1920.

    Google Scholar 

  53. Seifert K: Elektronenmikroskopische Untersuchungen der Aorta des Hauschweines. Z Zellforsch Microskop Anat 58: 331–368, 1968.

    Article  Google Scholar 

  54. Gabella G: Structure of smooth muscle. In: Smooth Muscle: An Assessment of Current Knowledge. E Bülbring, AF Brading, AW Jones, T Tomita (eds), London: Edward Arnold, p 1–46, 1981

    Google Scholar 

  55. Staubesand J: Anatomie der Blutgefässe. I. Funktionelle Morphologie der Arterien, Venen und arterio-venösen Anastomosen. In: Angiologie. M Ratschow (ed), Stuttgart: Thieme, p 23–82, 1959.

    Google Scholar 

  56. Strong KC: A study of the structure of the media of the distributing arteries by the method of microdissection. Anat Ree 72: 151–168, 1938.

    Article  Google Scholar 

  57. Fischer H: Über die funktionelle Bedeutung des Spiralverlaufes der Muskulatur in der Arterienwand. Gegenbaurs Morphol Jahrbuch 91: 394–445, 1951.

    Google Scholar 

  58. Ball RA, Sautter JH, Katter MS: Morphological characteristics of the anterior mesenteric artery of fowl. Anat Rec 146: 251–255, 1963.

    Article  PubMed  CAS  Google Scholar 

  59. Yohro T, Burnstock G: Fine structure of “intimal cushions” at branching sites in coronary arteries of vertebrates: A scanning and transmission electron microscopic study. Z Anat Entwickl Gesch 140: 187–202, 1973.

    Article  Google Scholar 

  60. Osborne-Pellegrin MJ: Some ultrastructural characteristics of the renal artery and abdominal aorta in the rat. J Anat 125: 641–652, 1978.

    PubMed  CAS  Google Scholar 

  61. Dacey RG Jr, Duling BR: A study of rat intracerebral arterioles: methods, morphology, and reactivity. Am J Physiol 243: H598–H606, 1982.

    PubMed  Google Scholar 

  62. Rhodin JAG: The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 18: 181–223, 1967.

    Article  PubMed  CAS  Google Scholar 

  63. Hua C, Cragg B: Measurements of smooth muscle cells in arterioles of guinea pig ileum. Acta Anat 107: 224–230, 1980.

    Article  PubMed  CAS  Google Scholar 

  64. Komuro T, Desaki J, Uehara Y: Three-dimensional organization of smooth muscle cells in blood vessels of laboratory rodents. Cell Tissue Res 227: 429–437, 1982.

    Article  PubMed  CAS  Google Scholar 

  65. Uehara Y., Komuro T., Desaki J: Morphology of vascular smooth muscle cells and pericytes as revealed by transmission and scanning EM. In: Electron Microscopy, Vol II, Biology. Ninth International Congress of Electron Microscopy, p 464–465, 1978.

    Google Scholar 

  66. Mazanet R, Franzini-Armstrong C: Scanning electron microscopy of pericytes in rat red muscle. Microvasc Res 23: 361–369, 1982.

    Article  PubMed  CAS  Google Scholar 

  67. Tilton RG, Kilo C, Williamson JR, Murch DW: Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvasc Res 18: 336–352, 1979.

    Article  PubMed  CAS  Google Scholar 

  68. Marchesi VT, Florey HW: Electron microscopic observations on the emigration of leukocytes. QJ Exp Physiol 45: 343–348, 1960.

    CAS  Google Scholar 

  69. Florey HW, Grant LH: Leucocyte migration from small blood vessels stimulated with ultraviolet light, an electron microscope study. J Pathol Bacteriol 82: 13–17, 1961.

    Article  PubMed  CAS  Google Scholar 

  70. Majno G., Palade GE: Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study. J Biophys Biochem Cytol 11: 571–605, 1961.

    CAS  Google Scholar 

  71. Majno G, Palade GE, Schoefl GI: Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: A topographic study. J Biophys Biochem Cytol 11: 607–626, 1961.

    CAS  Google Scholar 

  72. Movat HZ, Fernando NVP: The fine structure of the terminal vascular bed. IV. The venules and their perivascular cells (pericytes, adventitial cells). Exp Mol Pathol 3: 98–114, 1964.

    Article  Google Scholar 

  73. Cotran RS: The delayed and prolonged vascular leakage in inflammation: II. An electron microscopic study of the vascular response after thermal injury. Am J Pathol 46: 589–620, 1965.

    CAS  Google Scholar 

  74. Franklin KJ: The physiology and pharmacology of veins. Physiol Rev 8: 346–364, 1928.

    Google Scholar 

  75. Fujiwara T., Ikeuchi M, Uehara Y: Scanning electron microscope study of smooth muscle cells in the mesenteric veins of the monkey. Biomed Res 4: 225–230, 1983.

    Google Scholar 

  76. Uehara Y, Fujiwara T: The morphological changes of arterial smooth muscle cells upon vasodilation and vasoconstriction. In: Progress in Microcirculation Research II. FC Courtice, DG Garlick, MA Perry (eds), Kensington: Committee in Postgraduate Medical Education, The University of New South Wales, p 405–410, 1984.

    Google Scholar 

  77. Uehara Y, Suyama K: Visualization of the adventital aspect of the vascular smooth muscle cells under the scanning electron microscope. J Electron Microsc 27: 157–159, 1978.

    CAS  Google Scholar 

  78. Murakami M, Sugita A, Shimada T, Nakamura K: Surface view of pericytes on the retinal capillary in rabbits revealed by scanning electron microscopy. Arch Histol Jpn 42: 297–303, 1979.

    PubMed  CAS  Google Scholar 

  79. Shimada T: Lymph and blood capillaries as studied by a new SEM technique. Biomed Res 2 (Suppl): 139–143, 1981.

    Google Scholar 

  80. Miller BG, Woods RI, Bohlen HG, Evan AP: A new morphological procedure for viewing microvessels: A scanning electron microsopic study of the vasculature of small intestine. Anat Ree 203: 493–503, 1982.

    Article  CAS  Google Scholar 

  81. Holley JA, Fahim MA: Scanning electron microscopy of mouse muscle microvasculature. Anat Ree 205: 109–117, 1983.

    Article  CAS  Google Scholar 

  82. Gattone VH II, Luft FC, Evan AP: Renal afferent and efferent arterioles of the rabbit. Am J Physiol 247: F219–F228, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Uehara, Y., Fujiwara, T., Kaidoh, T. (1990). Morphology of vascular smooth muscle fibers and pericytes: scanning electron microscopic studies. In: Ultrastructure of Smooth Muscle. Electron Microscopy in Biology and Medicine, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0683-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0683-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8025-5

  • Online ISBN: 978-1-4613-0683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics