Skip to main content

Brain Recognition Sites for Methylphenidate and the Amphetamines

Their Relationship to the Dopamine Transport Complex, Glucoreceptors, and Serotonergic Neurotransmission in the Central Nervous System

  • Chapter
Application of Basic Neuroscience to Child Psychiatry

Abstract

The stimulants methylphenidate, cocaine, and amphetamine remain among the most widely abused psychotropic drugs. However, amphetamine has long been considered a prototypic anorectic agent and, in the past, was used in the treatment of obesity. Although amphetamine has been used as a therapeutic agent, amphetamine can be a potent psychotomimetic, and tolerance can develop to its anorectic effects. Consequently, the medical use of amphetamine has now been restricted to narcolepsy and childhood hyperkinesis. Methylphenidate is currently used in the treatment of attention-deficit disorder and minimal brain dysfunction in children to increase attention span and reduce hyperactivity. Methylphenidate also has been proposed as an antidepressant and can potentiate conventional antidepressant medications in patients suffering from atypical depression. Nevertheless, there is widespread illicit use of psychostimulants, in particular, because of the euphoriant and fatigue-reducing effects of methylphenidate, cocaine, and various amphetamine compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biel JH, Bopp BA: Amphetamines: Structure-activity relationships, in Iverson LL Iverson SD Snyder SH (eds): Handbook of Psychopharmacology, Vol. 11. New York, Plenum, 1979, pp 1–39

    Google Scholar 

  2. Moore KE: Amphetamines: Biochemical and behavioral actions in animals,in Iverson LL, Iverson SD, Snyder SH (eds): Handbook of Psychopharmacology, Vol. 11. New York, Plenum, pp 41-98

    Google Scholar 

  3. Hoebel BC : The psycholopharmacology of feeding, in Iverson LL Iverson SS Snyder SH(eds): Handbook of Psychopharmacology, Vol. 8. New York, Plenum, 1977, pp 94–112

    Google Scholar 

  4. Samanin R, Garattini S : Neuropharmacology of feeding, in Silverstone T (ed): Drugs and Appetite, Orlando, Florida, Academic, 1982, pp 23–39.

    Google Scholar 

  5. Ridley RM : Psychostimulants, in Grahame-Smith DG (ed): Psychopharmacology 2. Part 1: Preclinical Psychopharmacology. New York, Elsevier, 1985, p 183–205

    Google Scholar 

  6. Rowland NE, Carlton J : Neurobiology of an anorectic drug: Fenfluramine. Prog Neurobiol 27; 13–62, 1986

    PubMed  CAS  Google Scholar 

  7. Segal DS, Schuckit MA : Animal models of stimulant-induced psychosis, in Creese I (ed): Stimulants: Neurochemical, Behavioral, and Clinical Perspectives, New York, Raven, 1983, p 131–167

    Google Scholar 

  8. Robbins TW, Sahakian BJ : Behavioral effects of psychomotor stimulant drugs: Clinical and neuropsychological implications, in Creese I (ed): Stimulants: Neurochemical, Behavioral, and Clinical Perspectives, New York, Raven, 1983, p 301–331

    Google Scholar 

  9. Robinson TE, Becker JB : Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11:157–198, 1986

    CAS  Google Scholar 

  10. Klein DF, Gittelman R, Quitkin F, et al (eds): Diagnosis and Drug Treatment of Psychiatric Disorders: Adults and Children, ed 2. Baltimore, Williams & Wilkins, 1980

    Google Scholar 

  11. Bizzi AB, Bonaccorsi S, Jespersen A, et al : Pharmacological studies on amphetamine and fenfluramine, in Costa E Garattini S(eds): Amphetamines and Related Compounds, New York, Raven, 1970, pp 577–595

    Google Scholar 

  12. Cox RH, Maickel RP : Comparison of anorexigenic and behavioral potency of phenylethylamines. J Pharmacol Exp Ther 181:1–9, 1972

    PubMed  CAS  Google Scholar 

  13. Segal DS : Behavioral characterization of d- and 1-amphetamine. Science 190:475–477, 1975

    PubMed  CAS  Google Scholar 

  14. Axelrod J : Amphetamine: Metabolism, physiological disposition and its effect on catecholamine storage, in Costa E Garattini S(eds): Amphetamines and Related Compounds. New York, Raven, 1970, pp 207–216

    Google Scholar 

  15. Carlsson A : Amphetamine and brain catecholamines, in Costa E Garattini(eds): Amphetamines and Related Compounds. New York, Raven, 1970, p 289–300

    Google Scholar 

  16. Glowinski J, Axelrod J : Effect of drugs on the uptake, release and metabolism of H3-norepinephrine in the rat brain. J Pharmacol Exp Ther 149:43–49, 1965

    PubMed  CAS  Google Scholar 

  17. McMillen BA : CNS stimulants: Two distinct mechanisms of action for amphetamine-like drugs. Trends Pharmacol Sci 19:429–432, 1983

    Google Scholar 

  18. Skolnick P, Paul SM: in Smythies JR, Bradley R (eds): Int Rev Neurobiol 23;103-115, 1982

    Google Scholar 

  19. Hauger RL, Rehavi M, Angel I, et al : Brain recognition sites for heterocyclic antidepressants: Their role in the therapeutic action of antidepressants in mood disorders. Adv Human Psychopharmacol 4:291–317, 1987

    Google Scholar 

  20. Perel J, Dayton P : The neuropharmacology of psychostimulants, in Usdin E Forest I(eds): Psychotherapeutic Drugs, Part II. New York, Marcel Dekker, 1976, p 1287–1305

    Google Scholar 

  21. Krueger G, McGrath W : Behavioral and cardiovascular effects of stimulants, in Gordon M (ed): Psychopharmacological Agents, Vol. 1. Orlando, Florida, Academic, 1984, p 225–240

    Google Scholar 

  22. Chieneb C, Moore K : Blockade by reserpine of methylphenidate-induced release of lesion dopamine, J Pharmacol Exp Ther, 193:559–570, 1975

    Google Scholar 

  23. Breese A, Cooper B, Hollister A: Psychopharmacology (Berl) 44:5–10, 1975

    CAS  Google Scholar 

  24. Schweri MM, Skolnick P, Rafferty M, et al : [3H]-threo( + )-methylphenidate binding to 3,4-dihydroxyphenylethylamine uptake sites in corpus striatum: Correlation with the stimulant properties of ritalnic acid esters. J Neurochem 45:1062–1070, 1985

    PubMed  CAS  Google Scholar 

  25. Paul SM, Rehavi M, Rice KC, et al: Does high affinity [3H]-imipramine binding label serotonin reuptake sites in brain and platelet? Life Sci 28:2753–2760, 1981

    PubMed  CAS  Google Scholar 

  26. Rehavi M, Skolnick P, Brownstein MJ, et al : High-affinity binding of [3H]-desipramine to rat brain: A presynaptic marker for noradrenergic uptake sites. J Neurochem 38:889–895, 1982

    PubMed  CAS  Google Scholar 

  27. van der Zee P, Koger HS, Goojes J, et al : Aryl 1,4-dialk(en)ylpiperazines as selective and very potent inhibitors of dopamine uptake. Eur J Med Chem 15:363–370, 1980

    Google Scholar 

  28. Portoghese P, Malspeis LJ : Relative hydrolysis rates of certain alkyl (dl)-a-(2-piperidyl)-phenylacetates, J Pharmacol Sci, 50:494–501, 1961

    CAS  Google Scholar 

  29. Janowsky A, Schweri MM, Berger P, et al : The effects of surgical and chemical lesions on striatal [3H]threo-(+)-methylphenidate binding: Correlation with [3H]dopamine uptake. Eur J Pharmacol 108:187–191, 1985

    PubMed  CAS  Google Scholar 

  30. Heikkila RE, Manzino L : Behavioral properties of GBR 12909, GBR 13069, and GBR 13098. Specific inhibitors of dopamine uptake. Eur J Pharmacol 103:241–248, 1984

    Google Scholar 

  31. Janowsky A, Berger P, Vocci F, et al : Characterization of sodium-dependent [3H]GBR-12935 binding in brain: A radioligand for selective labelling of the dopamine transport complex. J Neurochem 46:1272–1276, 1986

    PubMed  CAS  Google Scholar 

  32. Bonnet J-J, Protais P, Chagraoni A, et al : High-affinity [3H]GBR-12783 binding to a specific site associated with the neuronal dopamine uptake complex in the central nervous system. Eur J Pharmacol 126:211–222, 1986

    PubMed  CAS  Google Scholar 

  33. Bonnet J-J, Costentin J : GBR 12783, a potent and selective inhibitor of dopamine uptake: Biochemical studies in vivo and ex vivo. Eur J Pharmacol 121:199–206, 1986

    PubMed  CAS  Google Scholar 

  34. Berger P, Janowsky A, Vocci F, et al : [3H]GBR-12935: A specific high affinity ligand for labelling the dopamine transport complex. Eur J Pharmacol 107:289–290, 1985

    PubMed  CAS  Google Scholar 

  35. Kennedy LT, Hanbauer I: Sodium-sensitive cocaine binding to rat striatal membranes: Possible relationship to dopamine uptake sites. J Neurochem 41:172–178, 1983

    PubMed  CAS  Google Scholar 

  36. Dawson TM, Gehlert DR, Wamsley JK : Quantitative autoradiography localization of the dopamine transport complex in the rat brain: Use of a highly selective radioligand: [3H]GBR-12935. Eur J Pharmacol 126:171–173, 1986

    PubMed  CAS  Google Scholar 

  37. Dawson TM, Gehlert DR, Wamsley JK : Quantitative autoradiographic localization of central dopamine D-l and D-2 receptors, in Creese I Breese G(eds): Dopamine Receptor Function and Biochemistry. New York, Plenum, 1987, pp 78–97

    Google Scholar 

  38. Javitch JA, Blaustein RO, Snyder SH : [3H]mazindol binding associated with neuronal dopamine and norepinephrine uptake sites. Mol Pharmacol 26:35–44, 1987

    Google Scholar 

  39. Dubocovich ML, Zahniser NR : Binding characteristics of the dopamine uptake inhibitor [3H]nomifensine to striatal membranes. Biochem Pharmacol 34:1137–1148, 1985

    PubMed  CAS  Google Scholar 

  40. Janowsky A, Vocci F, Berger P, et al : [3H]GBR-12935 binding to the dopamine transporter is decreased in the caudate nucleus in Parkinsons disease. J Neurochem 49:617–621, 1982

    Google Scholar 

  41. Zelnik N, Angel I, Paul SM, et al : Decreased density of human striatal dopamine uptake sites with age. Eur J Pharmacol 126:175–176, 1986

    PubMed  CAS  Google Scholar 

  42. Wong DF, Wagner HN, Dannels RF, et al : Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226:1393–1396, 1984

    PubMed  CAS  Google Scholar 

  43. Price K, Farley I, Homykiewicz O : Neurochemistry of Parkinsons disease: Relation between striatal and limbic dopamine. Adv Biochem Psychopharmacol 19:293–300, 1978

    PubMed  CAS  Google Scholar 

  44. Byck R, Van Dyke C : Plasma concentrations and central effects following cocaine administration, in Petersen RC Stillman RC(eds): Cocaine. 1977. Washington, DC, U.S. Government Printing Office, 1977, p 97–108

    Google Scholar 

  45. Barash PG : Cocaine and related stimulants, in Petersen RC Stillman RC(eds): Cocaine, 1977. Washington, DC, U.S. Government Printing Office, 1977, p 193–202

    Google Scholar 

  46. Reith MEA, Meisler BE, Sershen H, Lajtha A : Structural requirements for cocaine congeners to interact with dopamine and serotonin uptake sites in mouse brain and to induce stereotyped behavior. Biochem Pharmacol 35:1123–1129, 1986

    PubMed  CAS  Google Scholar 

  47. Sershen H, Reith MEA, Lajtha A: Neuropharmacology 19:1145, 1980

    PubMed  CAS  Google Scholar 

  48. Ritz MC, Lamb RJ, Goldberg SR, et al : Cocaine receptors on dopamine transporters are related to selfadministration of cocaine. Science 237:1219–1222, 1987

    PubMed  CAS  Google Scholar 

  49. Martin WR, Eades CG, Thompson JA, et al : The effects of morphine and morphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–528, 1976

    PubMed  CAS  Google Scholar 

  50. Sharkey J, Glen KA, Wolfe S, et al : Cocaine binding at sigma receptors. Eur J Pharmacol 149:171–174, 1988

    PubMed  CAS  Google Scholar 

  51. Slifer BL, Balster RL : Reinforcing properties of stereoisomers of the putative sigma agonists N-allylnormetazoocine and cyclazocine in rhesus monkeys. J Pharmacol Exp Ther 225:522–531, 1983

    PubMed  CAS  Google Scholar 

  52. Pimoule C, Schoemaker H, Javoy-Agid F, et al : Decreased [3H]cocaine bindings in the human putamen of patients with Parkinson’s disease. Eur J Pharmacol 95:145–152, 1983

    PubMed  CAS  Google Scholar 

  53. Willner P : The role of dopamine in depression. Brain Res Rev 6:211–241, 1983

    CAS  Google Scholar 

  54. Scatton B, Dubois A, Dubocovich ML, et al : [3H]Nomifensine binding to the striatal dopamine uptake site. Life Sci 36:815–822, 1985

    PubMed  CAS  Google Scholar 

  55. Moore RY, Bloom FE : Localization of monoaminergic neurons in the central nervous system. Annu Rev Neurosci 2:113–143, 1979

    PubMed  CAS  Google Scholar 

  56. Kuczenski R : Biochemical actions of amphetamine and other stimulants, in Creese I (ed): Stimulants: Neurochemical, Behavioral, and Clinical Perspectives. New York, Raven, 1983, p 31–61

    Google Scholar 

  57. Leibowitz SF : Neurochemical systems of the hypothalamus, in Morgane PJ Panksepp J(eds): Handbook of the Hypothalamus, Vol. 3. New York, Marcel Dekker, 1980, pp 299–437

    Google Scholar 

  58. Leibowitz SF : Hypothalamus catecholamine systems in relation to control of eating behavior and mechanisms of reward, in Hoebel BC Novin D(eds): The Neural Basis of Feeding and Rewards. Maine, Haer Institute, 1982, pp 241–257

    Google Scholar 

  59. Grossman SP: Contemporary problems concerning our understanding of brain mechanisms that regulate food intake and body weight, in Stunkard AJ Stellar E (eds): Eating and Its Disorders, New York, Raven, 1984, pp 5–13

    Google Scholar 

  60. Hoebel BG : Neurotransmitters in the control of feeding and its rewards: Monoamines, opiates and braingut peptides, in Stunkard AJ Stellar E(eds): Eating and Its Disorders, New York, Raven, 1984, pp 15–38

    Google Scholar 

  61. Leibowitz SF : Brain neurotransmitters and appetite regulation. Psychopharmacol Bull 21:412–418, 1985

    PubMed  CAS  Google Scholar 

  62. Morley JE, Levine AS : Pharmacology of eating behavior. Annu Rev Pharmacol Toxicol 25:127–146, 1985

    PubMed  CAS  Google Scholar 

  63. Blundell JE : Psychopharmacology of centrally acting anorectic agents, in Sandler M Silverstone T(eds): Psychopharmacology and Food. Oxford, Oxford University Press, 1986, p 71–89

    Google Scholar 

  64. Morley JE, Blundell JE : The neurobiological basis of eating disorders: Some formulations. Biol Psychiatry 23:53–78, 1988

    PubMed  CAS  Google Scholar 

  65. Paul SM, Hulihan B, Hauger R, et al : High affinity and stereospecific binding of [3H]d-amphetamine to rat brain. Eur J Pharmacol 78:145–147, 1982

    PubMed  CAS  Google Scholar 

  66. Paul SM, Hulihan-Giblin B, Skolnick P: (+)-Amphetamine binding to rat hypothalamus: Relation to anorexic potency of phenylethylamines. Science 218:487–490, 1982

    PubMed  CAS  Google Scholar 

  67. Hauger RL, Hulihan-Giblin B, Skolnick P, et al : Characteristics of [3H](+)-amphetamine binding sites in the rat central nervous system. Life Sci 34:771–782, 1984

    PubMed  CAS  Google Scholar 

  68. Bonisch H : Biochemical mechanisms for psychostimulant effects. Arch Pharmacol 327:267, 1984

    CAS  Google Scholar 

  69. Lesage A, Strolin Benedetti M, Rumigny JF : Evidence that (+)[3H]-amphetamine binds to acceptor sites which are not MAO-A. Biochem Pharmacol 34:3002–3005, 1985

    Google Scholar 

  70. Lesage A, Strolin Benedetti M, Rumigny JF: High affinity binding site for (+)amphetamine in rat hypothalamus: Fact or artifact? Neurochem Int 6:283–286, 1984

    PubMed  CAS  Google Scholar 

  71. Blosser JC, Barrantes M, Parker RB : Correlation between anorectic potency and affinity for hypothalamic (+ )-amphetamine binding sites of phenylethylamines. Eur J Pharmacol 134:97–103, 1987

    PubMed  CAS  Google Scholar 

  72. Angel I, Hauger RL, Luu MD, et al : Glucostatic regulation of (+)-[3H]amphetamine binding in the hypothalamus: Correlation with Na+, K+ -ATPase activity. Proc Natl Acad Sci USA 82:6320–6324, 1985

    PubMed  CAS  Google Scholar 

  73. Hauger RL, Hulihan-Giblin B, Skolnick P, et al : Glucostatic regulation of hypothalamic and brainstem [3H](+)-amphetamine binding during food deprivation and refeeding. Eur J Pharmacol 124:267–275, 1986

    PubMed  CAS  Google Scholar 

  74. Grossman SP : The biology of motivation. Annu Rev Psychol 30:209–242, 1979

    PubMed  CAS  Google Scholar 

  75. Morley JE, Levine AS : The central control of appetite. Lancet 1:398–401, 1983

    PubMed  CAS  Google Scholar 

  76. Stellar E : The physiology of motivation. Psychol Rev 61:5–22, 1954

    PubMed  CAS  Google Scholar 

  77. Cahill GF : Starvation. Trans Am Clin Climatoi Assoc 94:1–21, 1982

    Google Scholar 

  78. Hauger R, Hulihan-Giblin B, Angel I, et al : Glucose regulates [3H]( + )-amphetamine binding and Na+ K+ ATPase activity in the hypothalamus: A proposed mechanism for the glucostatic control of feeding and satiety. Brain Res Bull 16:281-288, 1986

    Google Scholar 

  79. Mayer J, Bates MW : Blood glucose and food intake in normal and hypophysectomized, alloxan-treated rats. Am J Physiol 168:812–821, 1952

    PubMed  CAS  Google Scholar 

  80. Mayer J, Thomas DW: Regulation of food intake and obesity. Science 156:328–337, 1967

    PubMed  CAS  Google Scholar 

  81. Le Magnen J : Interactions of glucostatic and lipostatic mechanisms in the regulatory control of feeding, in Novin D Wyrwicka W Bray G(eds): Hunger: Basic Mechanisms and Clinical Implications, New York, Raven, 1976, pp 89–101

    Google Scholar 

  82. Smith GP, Epstein AN : Increased feeding in response to decreased glucose utilization in the rat and monkey. Am J Physiol 217:1083–1091, 1969

    PubMed  CAS  Google Scholar 

  83. Balaguia S, Kanner M : Hypothlamic sensitivity to 2-deoxy-D-glucose and glucose: Effects on feeding behavior. Physiol Behav 7:251–262, 1971

    Google Scholar 

  84. Louis-Sylvestre J, Le Magnen J : A fall in blood glucose level precedes meal onset in free-feeding rats. Neurosci Biobehav Rev 4(suppl 1): 13–21, 1980

    Google Scholar 

  85. Le Magnen J : The body energy regulation: The role of three brain responses to glucopenia. Neurosci Biobehav Rev 4(suppl l):65–74, 1980

    PubMed  Google Scholar 

  86. Smith GP, Gibbs J, Strohmayer AJ, et a l: Threshold doses of 2-deoxy-D-glucOse for hyperglycemia and feeding in rats and monkeys. Am J Physiol 222:77–86, 1972

    PubMed  CAS  Google Scholar 

  87. Oomura Y, Ooyama H, Sujimori M, et al : Glucose inhibition of the glucose-sensitive neurone on the rat lateral hypothalamus. Nature (Lond) 247:284–286, 1974

    CAS  Google Scholar 

  88. Oomura Y : Glucose as a regulator of neuronal activity, in Szabo AJ (ed): Advances in Metabolic Disorders. Orlando, Florida, Academic, 1983, p 31–65

    Google Scholar 

  89. Ritter RC, Slusser PG, Stone S : Glucoreceptors controlling feeding and blood glucose: Location in the hindbrain. Science 213:451–453, 1981

    PubMed  CAS  Google Scholar 

  90. Ritter SJ, Mumane M, Ladenheim EE : Glucoprivic feeding is impaired by lateral or fourth ventricle alloxan injection. Am J Physiol 243:R312–317, 1982

    PubMed  CAS  Google Scholar 

  91. Miselis RR, Epstein AN : Feeding induced by intracerebroventricular 2-deoxy-D-glucose in the rat. Am J Physiol 220:1438–1447, 1975

    Google Scholar 

  92. Woods SC, McKay LD : Intraventricular alloxan eliminates feeding elicited by 2-deoxyglucose. Science 202:1209–1211, 1978

    PubMed  CAS  Google Scholar 

  93. Dunn JS, Sheehan JL, McLetchie NGB : Necrosis of Islets of Langerhans produced experimentally. Lancet 1:484–487, 1943

    Google Scholar 

  94. Hauger R, Hulihan-Giblin B, Paul SM : Increased number of hypothalamic [3H]( + )-amphetamine binding sites in genetically obese (ob/ob) mice. Neuropharmacology 25:327–330, 1986

    PubMed  CAS  Google Scholar 

  95. Bray GA, York DA : Hypothalamic and genetic obesity in experimental animals: An autonomic and endocrine hypothesis. Physiol Rev 59:719–809, 1979

    PubMed  CAS  Google Scholar 

  96. Heikkila RE, Babington RG, Houlihan HJ : Pharmacological studies with several analogs of mazindol: Correlation between effects on dopamine uptake and various in vivo responses. Eur J Pharmacol 71:277–286, 1981

    PubMed  CAS  Google Scholar 

  97. Carruba MO, Zambotti F, Vincentini L, et al : Pharmacology and biochemical profile of a new anorectic drug: Mazindol, in Garattini S Samanin R(eds): Central Mechanisms of Anorectic Drugs, New York, Raven, 1978, p 145–164

    Google Scholar 

  98. Ross SB : The central stimulatory action of inhibitors of dopamine uptake. Life Sci 24:159–167, 1979

    PubMed  CAS  Google Scholar 

  99. Javitch JA, Blaustein RO, Snyder SH : [3H]Mazindol binding associated with neuronal dopamine and norepinephrine uptake sites. Mol Pharmacol 26:35–44, 1984

    PubMed  CAS  Google Scholar 

  100. Heikkila RE, Cabat FC, Manzinoi LM, et al : Unexpected differences between mazindol and its homologs on biochemical and behavioral responses. J Pharmacol Exp Ther 217:745–749, 1981

    PubMed  CAS  Google Scholar 

  101. Angel I, Paul SM : Demonstration of specific binding sites for [3H]mazindol in rat hypothalamus: Correlation with the anorectic properties of phenylethylamines. Eur J Pharmacol 113:133–134, 1985

    PubMed  CAS  Google Scholar 

  102. Angel I, Luu M-D, Paul SM : Characterization of [3H]mazindol binding in rat brain: Sodium-sensitive binding correlates with the anorectic potencies of phenylethylamines. J Neurochem 48:491–497, 1987

    PubMed  CAS  Google Scholar 

  103. Gold RM, Jones AP, Sawchenko PE : Paraventricular area: Critical focus of a longitudinal neurocircuitry mediating food intake. Physiol Behav 18:1111–1119, 1977

    PubMed  CAS  Google Scholar 

  104. Crawley JN, Kiss JZ : Paraventricular nucleus lesions abolish the inhibition of feeding induced by systemic cholecystokinin. Peptides 6:927–935, 1985

    PubMed  CAS  Google Scholar 

  105. Angel I, Goldman ME, Paul SM : Defective glucostatic regulation of anorectic drug recognition sites and Na+ K+ ATPase in genetically obese mice. Soc Neurosci Abs 12(pt 2):795, 1986

    Google Scholar 

  106. Sanders-Bush E, Massari VJ : Actions of drugs that deplete serotonin. Fed Proc 36:2149–2153, 1977

    PubMed  CAS  Google Scholar 

  107. Angel I, Luu M-D, Hauger R, et al : Specific [3H]mazindol and [3H]p-chloroamphetamine binding sites in the hypothalamus: Correlation with anorectic properties of phenylethylamines. Soc Neurosci Abs 11:670, 1985

    Google Scholar 

  108. Shulgin AT: The background and chemistry of MDMA. J Psychoactive Drugs 18:291–299, 1986

    PubMed  CAS  Google Scholar 

  109. Lyon RA, Glennon RA, Titeler M : 3,4-Methylenedioxymethamphetamine (MDMA): Stereoselective interactions at brain 5-HT, and 5-HT2 receptors. Psychopharmacology 88:525–526, 1986

    PubMed  CAS  Google Scholar 

  110. Battaglia G, Brooks BP, Kulsakdinun C, et al : Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149:159–163, 1988

    PubMed  CAS  Google Scholar 

  111. Johnson MP, Hoffman AJ, Nichols DE : Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur J Pharmacol 132:269, 1986

    PubMed  CAS  Google Scholar 

  112. Gehlert DR, Schmidt CJ, Wu L, et al : Evidence for specific methylenedioxymethamphetamine (ectasy) binding sites in the rat brain. Eur J Pharmacol 119:135–136, 1985

    PubMed  CAS  Google Scholar 

  113. Herberg LJ : Hunger reduction produced by injecting glucose into the lateral ventricle of the rat. Nature (Lond) 245-246, 1960

    Google Scholar 

  114. Hulihan-Giblin B, Hauger RL, Janowsky A, et al : Dopaminergic denervation increases [3H](+)-amphetamine binding in the rat striatum. Eur J Pharmacol 113:141–142, 1985

    PubMed  CAS  Google Scholar 

  115. Kuhar MJ, Ritz MC, Sharkey J : Cocaine receptors on dopamine transporters mediate cocaine-reinforced behavior. NIDA Research Monograph 88:14–21, 1988.

    PubMed  CAS  Google Scholar 

  116. Hanbauer I : Modulation of cocaine receptors. NIDA Research Monograph 88:44–54, 1988

    PubMed  CAS  Google Scholar 

  117. Volkow ND, Fowler JS, Wolf AP, et al : Cocaine binding in the human brain with positron emission tomography. Soc Neurosci Abstr 15:802, 1989

    Google Scholar 

  118. Meyer JS, Collins L : Cocaine binding sites in feta rat brain. Soc Neurosci Abstr 15:255, 1989

    Google Scholar 

  119. Berger P, Gawn F, Kosten TR : Treatment of cocaine abuse with mazindol. Lancet ii:283, 1989

    Google Scholar 

  120. Vincent GP, Levin BE : In vitro autoradiographic mapping of a putative “anorectic” binding site with [3H]mazindol in rat brain. Soc Neurosci Abstr 15:1131, 1989

    Google Scholar 

  121. Hauger RL, Hulihan-Giblin B, Janowsky A, et al : Central recognition sites for psychomotor stimulants: methyl phenadate and amphetamine, in O’Brien RA (ed.): Receptor Binding in Drug Research, New York, Marcel Dekker Inc., 1986, pp. 167–182

    Google Scholar 

  122. Angel I, Janowsky J, Paul SM: The effects of serotonergic and dopaminergic lesions and sodium ions on [3H]mazindol binding in rat hypothalamus and corpus striatum. Brain Research, 1990, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Publishing Corporation

About this chapter

Cite this chapter

Hauger, R.L., Angel, I., Janowsky, A., Berger, P., Hulihan-Giblin, B. (1990). Brain Recognition Sites for Methylphenidate and the Amphetamines. In: Deutsch, S.I., Weizman, A., Weizman, R. (eds) Application of Basic Neuroscience to Child Psychiatry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0525-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0525-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7849-8

  • Online ISBN: 978-1-4613-0525-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics