Skip to main content

Acetylcholine, Dopamine and NMDA Transmission in the Caudate-Putamen: Their Interaction and Function as a Striatal Modulatory System

  • Chapter
The Basal Ganglia IV

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 41))

Abstract

Drugs acting on muscarinic cholinergic receptors, dopaminergic D-1, D-2, D-3, D-4 receptors and glutamatergic N-Methyl-D-Aspartate (NMDA) receptors are known to exert major influences on motor functions by an action on the Basal Ganglia. This strikingly contrasts with the elusiveness of the influences of these receptors on the function of striatal neurons as measured by electrophysiological methods that readily demonstrate the action of classical neurotransmitter receptors such as those of the glutamate/AMPA or GABA-A type. For example, only in recent times, almost 30 years after the appraisal of dopamine (DA) deficiency as a causal factor in Parkinson’s disease, the electrophysiological actions of DA at the single cell level are starting to be unraveled (Calabresi et al., 1987; Lacey et al, 1987; Kitai and Surmeier, 1993). The reason for the elusive nature of dopaminergic, muscarinic and NMDA transmission might be the fact that they do not directly trigger or inhibit action potentials but rather gate or modulate their generation by “fast” neurotransmitter receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin, R.L., Young, A.B., and Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci., 12:366–375.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G.E., DeLong, M.R., and Strick, P.L., 1986, Parallel organization of functionally segregated circuits linking basal ganglia and cortex, Annu. Rev. Neurosci. 9:357–381.

    Article  PubMed  CAS  Google Scholar 

  • Apicella, P., Scarnati, E., and Schultz, W., 1991, Tonically discharging neurons of monkey striatum respond to preparatory and rewarding stimuli, Exp. Brain Res. 84:672–675.

    Article  PubMed  CAS  Google Scholar 

  • Arenas, E., Alberch, J., Perez-Navarro, E., Solsona, C, and Marsal, J., 1991, Neurokinin receptors differentially mediate endogenous acetylcholine release evoked by tachykinins in the neostriatum, J neurosci.11,8:2332–2338.

    PubMed  CAS  Google Scholar 

  • Barbeau, A., 1962, The pathogenesis of Parkinson’s disease:a new hypothesis, Can. med. Ass.J. 87:802–807.

    PubMed  CAS  Google Scholar 

  • Barone, P., Davis, T.A., Braun, A.R., and Chase, T.N., 1986, Dopaminergic mechanisms and motor function:characterization of D-l and D-2 dopamine receptor interactions, Eur J.Pharmacol. 123:109–114.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, V., Normand, E., Bloch, B., 1992, Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes, J. Neurosci. 12,9:3591–3601.

    PubMed  CAS  Google Scholar 

  • Bertorelli, R., and Consolo, S., 1990, Di and D2 dopaminergic regulation of acetylcholine release from striata of freely moving rats, J Neurochem. 54:2145–2148.

    Article  PubMed  CAS  Google Scholar 

  • Bertorelli, R., Zambelli, M., Di Chiara, G., and Consolo, S., 1992, Dopamine depletion preferentially impairs D1-over- D2-receptor regulation of striatal in vivo acetylcholine release J.Neurochem. 59:353–357.

    Article  PubMed  CAS  Google Scholar 

  • Bolam, J.P., Ingham, CA., Izzo, P.N., Levey, A.I., Rye, D.B., Smith, A.D., Wainer, B.H.,1986, Substance P-containing terminals and synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat, Brain Res. 397:279–289.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi, P., Mercuri, N., Stanzione, P., Stefani, A., and Bernardi, G., 1987, Intracellular studies on the dopamine–induced firing inhibition of neostriatal neurons in vivo:evidence for D-1 involvement, Neurosci. 20:757–765.

    Article  CAS  Google Scholar 

  • Calabresi, P., Pisani, A., Mercuri, N.B., and Bernardi, G., 1992, Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels, Eur.J Neurosci. 4:929–935.

    Article  PubMed  Google Scholar 

  • Carlsson, M., and Carlsson, A., 1989, Dramatic synergism between MK–801 and Clonidine with respect to locomotor stimulatory effect in monoamine-depleted mice, J.Neural Transm. 77:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H.T., 1988, Dopamine-acetylcholine interaction in the rat striatum:a dual-labeling immunocytochemical study, Brain Res. 21:295–304.

    CAS  Google Scholar 

  • Chang, H.T., and Kita, H., 1992, Interneurons in the rat striatum:relationships between parvalbumin neurons and cholinergic neurons, Brain Res. 574:307–311.

    Article  PubMed  CAS  Google Scholar 

  • Cherubini, E., Herrling, P.L., Lanfumey, L., and Stanzione, P., 1988, Excitatory amino acids in synaptic excitation of striatal neurones in vitro, J.Physiol., 400:677–690.

    PubMed  CAS  Google Scholar 

  • Chesselet, M.F., Graybiel, A.M., 1986, Striatal neurons expressing somatostatin-like immunoreactivity: evidence for a peptidergic interneuronal system in the cat, Neurosci. 17,3:547–557.

    Article  CAS  Google Scholar 

  • Chesselet, M.F., Weiss, L., Wuenschell, C, Tobin,m A.J., and Affolter, H.-V., 1987, Comparative distribution of mRNAs for glutamic acid decarboxylase, tyrosine hydroxylase, and tachykinins in the basal ganglia:an in situ hybridization study in the rodent brain, J.Comp. Neurol. 262:125–140.

    Article  PubMed  CAS  Google Scholar 

  • Consolo, S., Girotti, P., Russi, G., and Di Chiara, G., 1992, Endogenous dopamine facilitatestriatal in vivo acetylcholine release by acting on Dj receptors localized in the striatum, J.Neurochem. 59, 4:1555

    Google Scholar 

  • Consolo, S., Salmoiraghi, P., Amoroso, D., and Kolasa, K., 1990, Treatment with oxitracetam or choline restores cholinergic biochemical and pharmacological activities in striata of decorticated rats, J.Neurochem. 54:571–577

    Article  PubMed  CAS  Google Scholar 

  • Consolo, S., Wu, C.F., Fiorentini, F., Ladinsky, H., and Vezzani, A., 1987, Determination of endogenous acetylcholine release in freely moving rats by transstriatal dialysis coupled to a radioenzymatic assay:effect of drugs, J Neurochem. 48:1459–1465.

    Article  PubMed  CAS  Google Scholar 

  • Damsma, G., Robertson, G.S., Tham, C.S., and Fibiger, H.C., 1991, Dopaminergic regulaation of striatal acetylcholine-release:importance of D1 and N-methyl-D-aspartate receptors J. Pharmacol. Exp.Ther. 259:1064–1072.

    PubMed  CAS  Google Scholar 

  • Damsma, G., Tham, C.S., Robertson, G.S., and Fibiger, H.C., 1990, Dopamine D1 receptor stimulation increases striatal acetylcholine release in the rat, Eur.J.Pharmacol. 186:335–338.

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara, G., Gessa, G.L., 1981, “Glutamate as a Neurotransmitter,”Vol. 27, Raven Press, New York.

    Google Scholar 

  • Di Chiara, G., Morelli, M., 1993, Dopamine-Acetylcholine-Glutamate interactions in the striatum. A Working Hypothesis, Adv. in Neurol. 60:102–106.

    Google Scholar 

  • Di Chiara, G., Carboni, E., Morelli, M., Cozzolino, A., Tanda, G.L., Pinna, A., Russi, G., Consolo, S., 1993a, Stimulation of dopamine transmission in the dorsal caudate by pargyline as demonstrated by dopamine and acetylcholine microdialysis and Fos immunohistochemistry, Neurosci. in press.

    Google Scholar 

  • Dimova, R., Vuillet, J., Nieoullon, A., Kerkebian-Le Goff, L., 1993, Ultrastructural features of the choline acetyltransferase-containing neurons and relationships with nigral dopaminergic and cortical afferent pathways in the rat, Neurosci. in press.

    Google Scholar 

  • Fage, D., and Scatton, B., 1986, Opposing effects of D-l and D-2 receptor antagonists onacetylcholine levels in the rat striatum, Eur.J.Pharmacol. 129:359–364.

    Article  PubMed  CAS  Google Scholar 

  • Fagg, G.E., and Foster, A.C., 1983, Amino acid neurotransmitters and their pathways in the mammalian central nervous system, Neurosci. 9:701–709.

    Article  CAS  Google Scholar 

  • Freund, T.F., Powell, J.F., and Smith, A.D., 1984, Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines, Neurosci. 13:1189–1215.

    Article  CAS  Google Scholar 

  • Gerfen, C.R., 1991, Substance P (neurokinin-1) receptor mRNA is selectively expressed in cholinergic neurons in the striatum and basal forebrain, Brain Res. 556:165–170.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., 1992, The neostriatal mosaic:multiple levels of compartmental organization in the basal ganglia, Ann.Rev.Neuro sci. 15:285–320.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, CR., Engber, T.M., Mahan, L.C, Süsel, Z., Chase, T.N., Monsma, F.J., and Sibley, D.R., 1990, D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science 250:1429–1432.

    Article  PubMed  CAS  Google Scholar 

  • Gershanik, O., Heikkila, R.E., and Duvoisin, R.C, 1983, Behavioural correlation of dopamine receptor activation, Neurol. 33:1489–1494.

    CAS  Google Scholar 

  • Goodwin, P., Starr, B.S., and Starr, M.S., 1992, Motor responses to dopamine D1 and D2 agonists in the reserpine-treated mouse are affected differentially by the NMDA receptor antagonist MK 801, J. Neural Transm. 4:15–26.

    Article  CAS  Google Scholar 

  • Guennoun, R., and Bloch., B., 1992, Ontogeny of D1 and DARPP-32 gene expression in rat striatum: an in situ hybridization study, Molec. Brain Res. 12:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Guo, N., Robertson, G.S., and Fibiger, H.C., 1992, Scopolamine attenuates haloperidol-induced c-fos expression in the striatum, Brain Res. 588:164–167.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, T., Singh, V.K., McGeer, E.G., and McGeer, P.L., 1976, Immunohistochemical localization of choline acetyltransferase containing neostriatal neurons and their relationship with dopaminergic synapses, Brain Res. 102:164–173.

    Article  PubMed  CAS  Google Scholar 

  • Herrling, P.L., 1985, Pharmacology of the corticocaudate excitatory postsynaptic potential in the cat:evidence for its mediation by quisqualate or kainate receptors, Neurosci. 14:417–426.

    Article  CAS  Google Scholar 

  • Hulme.E.C, Birdsall, N.J.M., Buckley, N.J., 1990, Muscarinic receptor subtypes, Annu. Rev Pharmacol. Toxicol. 30:633–639.

    Article  PubMed  CAS  Google Scholar 

  • Hyttel, J., 1983, SCH 23390: the first selective dopamine D-1 antagonist, Eur J. Pharmacol. 91:153–158.

    Article  PubMed  CAS  Google Scholar 

  • Iorio, L.C, Barnett, A., Leitz, F.H., Houser, V.P., and Korduba, CA., 1983, SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems, J.Pharmacol.Exp.Ther. 226:462–468.

    PubMed  CAS  Google Scholar 

  • Izzo, P.N., and Bolam, J., 1988, Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat, J.Comp.Neurol. 269:219–234.

    Article  PubMed  CAS  Google Scholar 

  • Jarvie, K.R., Carón, M.G., 1993, Heterogeneity of dopamine receptors, in: “Parkinson’s disease, Adv. In Neurol., 60,” H. Narabayashi, T. Nagatsu, N. Yanagisawa, Y. Mizuno, eds., Raven Press, New York, pp.325–333.

    Google Scholar 

  • Jayaraman, A., 1984, Thalamostriate projections-An overview, in: “The Basal Ganglia”, J.S. McKenzie, R.E. Kemm, L.N. Wilcock, eds., Plenum Press, New York, pp. 69–86.

    Google Scholar 

  • Jones, E.G., and Leavitt, R.Y., 1974, Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey, J.Comp.Neurol. 154:349–378.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., 1986, The role of primate putamen neurons in the association of sensory stimuli with movement, Neurosci.Res. 3:436–443.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., Raijkowski, J., and Evarts, E., 1984, Tonically discharging putamen neurons exhibit set-dependent responses, Proc.Natl.Acad.Sci.USA 81:4998–5001.

    Article  PubMed  CAS  Google Scholar 

  • Kitai,S.T., and Surmeier, D.J., 1993, Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons, Advances in Neurol. 60:40–52.

    CAS  Google Scholar 

  • Klockgether, T., and Turski, L., 1990, NMDA antagonists potentiate antiparkinsonian actions of L-DOPA in monoamine-depleted rats, Ann.Neurol. 28:539–546.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y., Inagaki, S., Shimada, S., Kito, S., Eckenstein, F., and Tohyama, M., 1987, Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons, Brain Res. 413:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Lacey, M.G., Mercuri, N.B., and North, R.A., 1987, Dopamine acts on D-2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta, J.Physiol. 392:397–416.

    PubMed  CAS  Google Scholar 

  • Laduron, P., 1983, Dopamine — sensitive adenylate cyclase as a receptor site, in: “Dopamine Receptors,” C. Kaiser, J.W. Kebabian, eds., American Chemical Society, Washington DC, pp. 46–52.

    Google Scholar 

  • Lapper, S.R., and Bolam, J.P., 1992, Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat, Neurosci. 51,3:533–545.

    Article  CAS  Google Scholar 

  • Lehmann, J., and Langer, S.Z., 1983, The striatal cholinergic interneuron:synaptic target of dopaminergic terminals?, Neurosci. 10,4:1105–1120.

    Article  CAS  Google Scholar 

  • Lehmann, J., and Scatton, B., 1982, Characterization of the excitatory amino acid receptor- mediated release of [3H]acetylcholine from rat striatal slices, Brain Res. 252:77–83.

    Article  PubMed  CAS  Google Scholar 

  • Le Moine, C, Normand, E., and Bloch, B., 1991, Phenotypical characterization of the rat striatal neurons expressing the Dj dopamine receptor gene, Proc. Natl.Acad.Sci. 88:4205–4209.

    Article  PubMed  Google Scholar 

  • Le Moine, C, Normand, E., Guitteny, A.F., Fouque, B., Teoule, R., and Bloch, B., 1990, Dopamine receptor gene expression by enkephalin neurons in rat forebrain, Proc.Natl.Acad.Sci.USA 87:230–234.

    Article  PubMed  Google Scholar 

  • Longoni, R., Spina, L., and Di Chiara, G., 1987, Permissive role of D-1 receptor stimulation for the expression of D-2 mediated behavioral responses:A quantitative phenomenological study in rats, Life Sci. 41:2135–2145.

    Article  PubMed  CAS  Google Scholar 

  • Martone, M.E., Armstrong, D.M., Young, S.J., and Groves, P.M., 1992, Ultrastructural examination of enkephalin and substance P input to cholinergic neurons within the rat neostriatum, Brain Res. 594:253–262.

    Article  PubMed  CAS  Google Scholar 

  • Mashurano, M., and Waddington, J.L., 1986, Stereotyped behaviour in response to the selective D-2 dopamine receptors agonist RU 24213 is enhanced by pretreatment with the selective D-1 agonist SK&F 38393, Neuropharmacol. 25:947–949.

    Article  CAS  Google Scholar 

  • Maura, G., Giardi, A., and Raiteri, M., 1988, Release-regulating D-2 dopamine receptors are located on striatal glutamatergic nerve terminals, J.Pharmacol.Exp.Ther. 247:680–684.

    PubMed  CAS  Google Scholar 

  • McGeer, P.L., Boulding, J.E., Gibson, W.C., and Foulkes, R.G., 1961, Drug–induced extrapyramidal reactions, J.Am.med.Ass. 177:665–670.

    CAS  Google Scholar 

  • Meredith, G.E., and Wouterlood, F.G., 1990, Hippocampal and midline thalamic fibers and terminals in relation to the choline acetyltransferase-immunoreactive neurons in nucleus accumbens of the rat:a light and electron microscopic study, J.Comp.Neurol. 296:204–221.

    Article  PubMed  CAS  Google Scholar 

  • Morelli, M., and Di Chiara, G., 1990, MK-801 potentiates dopaminergic D-1 but reduces D-2 responses in the 6-hydroxydopamine model of Parkinson’s disease, Eur. J.Pharmacol. 182:611–612.

    Article  PubMed  CAS  Google Scholar 

  • Morelli, M., Cozzolino, A., Pinna, A., Fenu, S., Carta, A., Di Chiara, G., 1993b, L-Dopa stimulates c-fos expression in dopamine denervated striatum by combined activation of D-1 and D-2 receptors, Brain Res. in press.

    Google Scholar 

  • Morelli, M., Fenu, S., Cozzolino, A., Pinna, A., Carta, A., and Di Chiara, G., 1993a, Blockade of muscarinic receptors potentiates D1 dependent turning behavior and c-fos expression in 6-hydroxydopamine-lesioned rats but does not influence D2 mediated responses, Neurosci. 3:673–678.

    Article  Google Scholar 

  • Morelli, M., Fenu, S., Pinna, A., and Di Chiara, G., 1992, Opposite effects of NMDA receptor blockade on dopaminergic D1-and D2-mediated behavior in the 6-hydroxydopamine model of turning:relationship with c-fos expression, J.Pharmacol.Exp.Ther. 260, 1:402–408.

    PubMed  CAS  Google Scholar 

  • Nauta, W.J.H., Smith, G.P., Faull, R.L.M., and Domesick, V.B., 1978, Efferent connections and nigral afferents of the nucleus accumbens septi in the rat, Neurosci. 3:385–401.

    Article  CAS  Google Scholar 

  • Onali, P., Olianas, M.C., and Gessa, G.L., 1985, Characterization of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatum, Mol. Pharmacol. 28:138–142.

    PubMed  CAS  Google Scholar 

  • Paul, M.L., Graybiel, J.-C, Robertson, H.A., 1992, D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-deplcted striatum in a rat model of Parkinson’s disease, J. Neurosci. 12,10:3729–3742.

    PubMed  CAS  Google Scholar 

  • Parent, A., 1990, Extrinsic connections of the basal ganglia, Trends Neurosci. 13, 7:254–258.

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy, H.B., Schall, J.D., and Graybiel, A.M., 1992, Distributed but convergent ordering of corticostriatal projections:analysis of the frontal eye field and the supplementary eye field in the macaque monkey, J.Neurosci. 12,11:4468–4488.

    PubMed  CAS  Google Scholar 

  • Percheron, G., and Filion, M., 1991, Parallel processing in the basal ganglia:Up to a point, Trends Neurosci. 14:55–56.

    Article  PubMed  CAS  Google Scholar 

  • Petitet, F., Glowinski, J., and Beaujouan, J.-C., 1991, Evoked release of acetylcholine in the rat striatum by stimulation of tachykinin NK-1 receptors, Eur J.Pharmacol. 192:203–204.

    Article  PubMed  CAS  Google Scholar 

  • Phelps, P.E., Houser, C.R., and Vaughn, J.E., 1985, Immunocytochemical localization of choline acetyltransferase within the rat neostriatum:A correlated light and electron microscopic study of cholinergic neurons and synapses, J. Comparative Neurol. 238:286–294.

    Article  CAS  Google Scholar 

  • Pickel, V.M., and Chan, J., 1990, Spiny neurons lacking choline acetyltransferase immunoreactivity are the major targets of cholinergic and catecholaminergic terminals in the rat striatum, J.Neurosci.Res. 25:263–280.

    Article  PubMed  CAS  Google Scholar 

  • Pontieri, F.E., Morelli, M., Orzi, F., Terenzi, R., and Di Chiara, G., 1992, Metabolie mapping of the synergism between MK-801 and SKF 38393 in rats with unilateral lesions of the dopaminergic nigrostriatal pathway, Synapse 12:255260.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, G.S., Vincent, S.R., and Fibiger, H.C., 1990, Striatonigral projection neurons contain Didopamine receptor-activated c-fos, Brain Res. 523:288–290.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, G.S., Vincent, S.R., and Fibiger, H.C., 1992, D1 and D2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons, Neurosci. 49,2:285–296.

    Article  CAS  Google Scholar 

  • Samuel, D., Kerkerian Le Goff, L., Kumar, U., Errami, M., Scarfone, E., and Nieuollon, A., 1990, Changes in striatal cholinergic, GABAergic, dopaminergic and serotoninergic biochemical markers after kainic acid-induced thalamic lesions in the rat, J Neural Transm.(Parkinson’s Disease Section) 2:193–203.

    Article  CAS  Google Scholar 

  • Scatton, B., and Lehmann, J., 1982, N-Methyl-D-aspartate-type receptors mediate striatal 3H-acetylcholine release evoked by excitatory amino acids, Nature 297:422–424.

    Article  PubMed  CAS  Google Scholar 

  • Setler, P.E., Sarau, H.M., Zirkle, C.L., and Saunders, H.L., 1978, The central effects of a novel dopamine agonist, Eur.J.Pharmacol. 50:419–425.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., and Parent, A., 1986, Neuropeptide Y-immunoreactive neurons in the striatum of cat and monkey:morphological characteristics, intrinsic organization and Co-localization with somatostatin, Brain Res. 372:241249.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, A., Carlsson, A., and Carlsson, M.L., 1992, Differential locomotor interactions between dopamine D1/D2 receptor agonists and the NMDA antagonist dizocilpine in monoamine-depleted mice, J.Neural Transm. 90:199217.

    Article  CAS  Google Scholar 

  • Trugman, J.M., and Wooten, G.F., 1987, Selective D1 and D2 dopamine agonists differentially alter basal ganglia glucose utilization in rats with unilateral 6-hydroxydopamine substantia nigra lesions, J.Neurosci. 7,9:2927–2935.

    Google Scholar 

  • Vuillet, J., Dimova, R., Nieoullon, A., and Kerkerian-Le Goff, L., 1992, Ultrastructural relationships between choline acetyltransferase and neuropeptide Y-containing neurons in the rat striatum, Neurosci. 46:351–360.

    Article  CAS  Google Scholar 

  • Wilson, C.J., 1990, Basal Ganglia, in: “The Synaptic Organization of the Brain”, G.M. Shepherd, ed., Oxford University Press, New York, pp. 64-71.

    Google Scholar 

  • Wilson, C.J., Chang, H.T., and Kitai, S.T., 1990, Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum, J Neurosci. 10,2:508–519.

    PubMed  CAS  Google Scholar 

  • Wilson, C.J., Kita, H., and Kawaguchi, Y., 1989, GABAergic interneurons, rather than spiny cell axon collaterals, are responsible for the IPSP responses to afferent stimulation in neostriatal spinyneurons, Soc. Neurosci. Abst. 15:907.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Plenum Press, New York

About this chapter

Cite this chapter

Chiara, G.D., Morelli, M. (1994). Acetylcholine, Dopamine and NMDA Transmission in the Caudate-Putamen: Their Interaction and Function as a Striatal Modulatory System. In: Percheron, G., McKenzie, J.S., Féger, J. (eds) The Basal Ganglia IV. Advances in Behavioral Biology, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0485-2_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0485-2_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7591-6

  • Online ISBN: 978-1-4613-0485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics