Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 398))

Abstract

Exposure of various cell types to IFN results in increased enzymatic activities leading to the breakdown of tryptophan and evidence exists to suggest that the catabolism of tryptophan may be connected to the biological effects of interferon (Carlin et al., 1989. The first and rate-limiting enzymatic step in the degradation of tryptophan is the conversion of tryptophan to formylkynurenine. Two different enzymes are deputed to this function. The tryptophan 2,3-dioxygenase (TDO) is found only in the liver and the indoleamine 2,3-dioxygenase (IDO) is found in all tissues examined so far and inducible by IFN and IFN-inducers such as LPS and viruses. Tryptophan catabolism can be demonstrated in vivo in experimental murine models as well as in human subjects (Yoshida et al, 1979). We have confirmed the expression of IDO activity in human monocytes activated by IFN-γ and in the monocytic leukemia cell line THP-1 activated by IFN-γ or by TPA (Musso et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown R.R., Lee C.M., Kohler P.C., Hank J.A., Storer B.E., and Sondel P.M., 1989, Altered tryptophan and neopterin metabolism in cancer patients treated with recombinant interleukin 2.Cancer Res. 49: 4941.

    CAS  Google Scholar 

  • Carlin J.M., Ozaki Y., Byrne G.I., Brown R.R., and Borden E.C., 1989,, Interferons and indoleamine 2,3-dioxygenase: role in antimicrobial and antitumor effects.Experientia 45:535

    Google Scholar 

  • Denis M., 1991, Tumor Necrosis factor and granulocyte macrophage colony-stimulating factor stimulate human macrophages to restrict growth of virulent Mycobacterium avium and to kill avirulent M. avium: killing effector mechanism depends on the generation of reactive nitrogen intermediates.J. Leukoc. Biol49: 380.

    CAS  Google Scholar 

  • Ding A., Nathan C.F., Graycar J., Derynck R., Stuehr D.J., and Srimal S., 1990, Macrophage deactivating factor and tranforming growth factors-beta 1, -beta 2, and -beta 3 inhibit induction of macrophage nitrogen oxide synthesis by IFN-gamma.J. Immunol145: 940.

    CAS  Google Scholar 

  • Fernandez-Pol J. A., 1977, Iron: possible cause of the G1 arrest induced by picolinic acid.Biochem. Biophys. Res. Commun.78: 136.

    Article  CAS  Google Scholar 

  • Firth J.D., Ebert B.L., Pugh C.W., and Ratcliffe P.J., 1994, Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: Similarities with the erythropoietin 3’ enhancer.Proc. Natl Acad. Sci. USA91: 6496.

    Article  CAS  Google Scholar 

  • Goldberg M.A., Dunning S.P., and Franklin Bunn H., 1988, Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein.Science242: 1412.

    Article  CAS  Google Scholar 

  • Heyes M.P., Saito K., Jacobowitz D., Markey S.P., Takikawa 0., and Vickers J.H., 1992, Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brain.FASEB J. 6: 2977.

    Google Scholar 

  • Hibbs J.B., Jr., Westenfelder C., Taintor R., Vavrin Z., Kablitz C., Baranowski R.L., Ward J.H., Menlove R.L., McMurry M.P., Kushner J.P., and et al, 1992, Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy [published erratum appears in J Clin Invest 1992 Jul;90(l):295].J. Clin. Invest.89: 867.

    Google Scholar 

  • Kamijo R., Harada H., Matsuyama T., Bosland M., Gerecitano J., Shapiro D., Le J., Koh S.I., Kimura T., Green S.J., Mak T.W., Taniguchi T., and Vilcek J., 1994, Requirement for transcription factor IRF-l in NO synthase induction in macrophages.Science263: 1612.

    Article  CAS  Google Scholar 

  • Liew F.Y, Li Y., Severn A., Millott S., Schmidt J., Salter M., and Moncada S., 1991, A possible novel pathway of regulation by murine T helper type-2 (Th2) cells of a Thl cell activity via the modulation of the induction of nitric oxide synthase on macrophages.Eur. J. Immunol21: 2489.

    Article  CAS  Google Scholar 

  • Lorsbach R.B., Murphy W.J., Lowenstein C.J., Snyder S.H., and Russell S.W., 1993, Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-y and lipopolysaccharide.J. Biol Chem.268: 1908.

    CAS  Google Scholar 

  • Lowenstein C.J. and Snyder S.H., 1992, Nitric oxide, a novel biologic messanger.Cell 70:705.

    Google Scholar 

  • Lowenstein C.J., Alley E.W., Raval P., Snowman A.M., Snyder S.H., Russel S.W., and Murphy W.J., 1994, Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon t and lipopolysaccharide.Proc. Natl. Acad. Sci. USA90: 9730.

    Article  Google Scholar 

  • Martin E., Nathan C., and Xie Q., 1994, Role of interferon regulatory factor 1 in induction of nitric oxide synthase.J. Exp. Med.180: 977.

    Article  CAS  Google Scholar 

  • Maxwell P.H., Pugh C.W., and Ratcliffe P.J., 1993, Inducible operation of the erythropoietin 3’ enhancer in multiple cell lines: Evidence for a widespread oxygen-sensing mechanism.Proc. Natl Acad. Sci. USA90: 2423.

    Article  CAS  Google Scholar 

  • Melillo G., Cox G.W., Radzioch D., and Varesio L., 1993, Picolinic acid, a catabolite of L-tryptophan, is a costimulus for the induction of reactive nitrogen intermediate production in murine macrophages.J. Immunol150: 4031.

    CAS  Google Scholar 

  • Melillo G., Cox G.W., Biragyn A., Sheffler L., and Varesio L., 1994, Regulation of nitric oxide synthase mRNA expression by interferon-gamma and picolinic acid.J. Biol Chem.269: 8128.

    CAS  Google Scholar 

  • Musso T., Gusella G.L., Brooks A., Longo D.L., and Varesio L., 1994,, Interleukin-4 inhibits indoleamine 2,3,-dioxygenase expression in human monocytes.Blood83: 1408.

    Google Scholar 

  • Nathan C.F. and Hibbs J.B., Jr., 1991, Role of nitric oxide synthesisin macrophage antimicrobial activity.Curr. Opin. Immunol3: 65.

    Article  CAS  Google Scholar 

  • Nathan C.F., 1992, Nitric oxide as a secretory product of mammalian cells.FASEB J. 6: 3051.

    CAS  Google Scholar 

  • Nathan C.F. and Xie Q., 1994, Nitric oxide synthases: roles, tolls, and controls.Cell78: 915.

    Article  CAS  Google Scholar 

  • Nathan C.F. and Xie Q., 1994, Regulation of biosynthesis of nitric oxide.J. Biol Chem.269: 13725.

    CAS  Google Scholar 

  • Pugh C.W., Tan C.C., Jones R.W., and Ratcliffe P.J., 1991, Functional analysis of an oxygen-regulated transcriptional enhancer lying 3’ to the mouse erythropoietin gene.Proc. Natl Acad. Sci. U.S.A.88: 10553.

    Article  CAS  Google Scholar 

  • Rebello T., Lonnerdal B., and Hurley L.S., 1982, Picolinic acid in milk, pancreatic juice and intestine: inadequate for role in zinc absorption.Am. J. Clin. Nutr.35: 1.

    CAS  Google Scholar 

  • Ruffmann R., Welker R.D., Saito T., Chirigos M.A., and Varesio L., 1984, In vivo activation of macrophages but not natural killer cells by picolinic acid (PLA).J. Immunopharmacol.6: 291.

    Article  CAS  Google Scholar 

  • Ruffmann R., Schlick R., Chirigos M.A., Budzynsky W., and Varesio L., 1987, Antiproliferative activity of picolinic acid due to macrophage activation.Drugs. Exp. Clin. Res.13: 607.

    CAS  Google Scholar 

  • Saito K., Crowley J.S., Markey S.P., and Heyes M.P., 1993, A mechanism for increased quinolinic acid formation following acute systemic immune stimulation.J. Biol Chem.268: 15496.

    CAS  Google Scholar 

  • Semenza G.L., Roth P.H., Fang H., and Wang G.L., 1994, Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor\.J. Biol Chem. 269: 23757.

    CAS  Google Scholar 

  • Semenza G.L. and Wang G.L., 1994, A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.Mol. Cell Biol.12: 5447.

    Google Scholar 

  • Sharon M., Gnarra J.R., and Leonard W.J., 1990, A 100-kilodalton protein is associated with the murine interleukin 2 receptor: Biochemical evidence that pi00 is distinct from the a and b chains.Proc. Natl Acad. Sci. USA, 87: 4869

    Article  CAS  Google Scholar 

  • Varesio L., 1985, Induction and expression of tumoricidal activity by macrophages. “Mononuclear Phagocytes: Physiology and Pathology,” R.T. Dean and W. Jessup eds., Elsevier Science Publishers, Amsterdam, pp. 381 – 407.

    Google Scholar 

  • Varesio L., 1986, Molecular bases for macrophage activation.Ann. Inst. Pasteur. Immunol.137: 235.

    Article  Google Scholar 

  • Varesio L., Clayton M., Blasi E., Ruffmann R., and Radzioch D., 1990, Picolinic acid, a catabolite of tryptophan, as the second signal in the activation of IFN-gamma primed macrophages.J.Immunol, 145: 4265.

    CAS  Google Scholar 

  • Varesio L., Cox G.W., Pulkki K., Brooks A., and Melillo G., 1992, Arginine and tryptophan catabolism: the picolinic acid connection. “Advances in tryptophan Research,” I. Ishiguro, R. Kido, T. Nagatsu, Y. Nagamura and Y. Otha eds., Fujita Health University Press, Toyko, Japan pp. 309 – 313.

    Google Scholar 

  • Varesio L., Radzioch D., Bottazzi B., and Gusella G.L., 1992, Ribosomal RNA metabolism in macrophages.Curr. Top. Microbiol Immunol181: 209.

    CAS  Google Scholar 

  • Varesio L., Cox G.W., Pulkki K., Musso T., Latham P.S., Gusella G.L., and Espinoza-Delgado I., 1993, Activation of macrophages and monocytes by interferon-gamma and interleukin-2. “Mononuclear Phagocytes in Cell Biology,” J. Klostergaard and G. Lopez-Berestein eds.. CRC Press, Inc., Boca Raton, Ann Arbor, London, Tokio pp. 119 – 146.

    Google Scholar 

  • Wang G.L. and Semenza G.L., 1993, Desferrioxamine induces erythropoietin gene expression and hypoxia- inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction.Blood82: 3610.

    CAS  Google Scholar 

  • Wang G.L. and Semenza G.L., 1994, General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia.Proc. Natl Acad. Sci. USA90: 4304.

    Article  Google Scholar 

  • Xie Q., Cho H.J., Calaycay J., Mumford R.A., Swiderek K.M., Lee T.D., Ding A., Troso T., and Nathan C.F., 1992, Cloning and characterization of inducible nitric oxide synthase from mouse macrophages.Science256: 225.

    Article  CAS  Google Scholar 

  • Xie Q., Whisnant R., and Nathan C.F., 1993, Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon t and bacterial lipopolysaccharide.J. Exp. Med.177: 1779.

    Article  CAS  Google Scholar 

  • Xie Q., Kashiwabara Y., and Nathan C., 1994, Role of transcription factor NF-kB/Rel in induction of nitric oxide synthase.J. Biol Chem.269: 4705.

    CAS  Google Scholar 

  • Yoshida R., Urade Y., Tokuda M., and Hayaishi O., 1979,, Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection.Proc. Natl Acad. Sci. U.S.A. 76:4084.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Melillo, G., Bosco, M.C., Musso, T., Varesio, L. (1996). Immunobiology of Picolinic Acid. In: Filippini, G.A., Costa, C.V.L., Bertazzo, A. (eds) Recent Advances in Tryptophan Research. Advances in Experimental Medicine and Biology, vol 398. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0381-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0381-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8026-9

  • Online ISBN: 978-1-4613-0381-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics