Skip to main content

The Perfect Phylogeny Problem

  • Chapter
Steiner Trees in Industry

Part of the book series: Combinatorial Optimization ((COOP,volume 11))

Abstract

A phylogeny is a tree representation of the evolutionary history of a set of taxa (organisms, biological sequences, populations, or languages). Thus, phylogeny construction is among the basic computational problems in biology and linguistics. We will be concerned here with taxa described by the states they exhibit on a set of characters. A sample data set and a phylogeny for it (both adapted from [41]) are shown in Figure 1. The data is binary and in matrix form, rows are indexed by taxa and columns by characters. Entry (i, j) is “1” if taxon i has character j and it is “0” if the character is absent. The phylogeny shown is rooted and assumes that the taxa descend from a common ancestor where all characters are absent. Points at which characters emerge are indicated by labeled bars. 1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Richa Agarwala and David Fernández-Baca. A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J. Computing, 23:1216–1224, 1994.

    Article  MATH  Google Scholar 

  2. Richa Agarwala and David Fernández-Baca. Simple algorithms for perfect phylogeny and triangulating colored graphs. International Journal of Foundations of Computer Science, 7(1):11–21, 1996.

    Article  MATH  Google Scholar 

  3. Richa Agarwala, David Fernández-Baca, and Giora Slutzki. Fast algorithms for inferring evolutionary trees. Journal of Computational Biology, 2(3):397–408, 1995.

    Article  Google Scholar 

  4. A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Computing, 10(3), 1981.

    Article  MathSciNet  Google Scholar 

  5. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Meth., 8:277–284, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. L. Bodlaender, M. R. Fellows, M. T. Hallet, H. T. Wareham, and T. J. Warnow. The hardness of perfect phylogeny, feasible register assignment, and other problems on thin colored graphs. Theoretical Computer Science, 244:167–188, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hans Bodlaender. A linear-time algorithm for finding tree- decompositions of small treewidth. SIAM J. Computing, 25:1305–1317, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  8. Hans Bodlaender, Michael Fellows, and Tandy Warnow. Two strikes against perfect phylogeny. In 19th International Colloquium on Automata, Languages, and Programming, pages 273–283. Springer Verlag, Lecture Notes in Computer Science, 1992.

    Google Scholar 

  9. Hans L. Bodlaender and Ton Kloks. A simple linear-time algorithm for triangulating three-colored graphs. Journal of Algorithms, 15(1):160–172, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  10. Maria Bonet, Cynthia Phillips, Tandy Warnow, and Shibu Yooseph. Constructing evolutionary trees in the presence of polymorphic characters. SIAM J. Computing, 29(1):103–131, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  11. David Bryant. Building trees, hunting for trees,and comparing trees: Theory and methods in phylogenetic analysis. PhD thesis, Department of Mathematics, University of Canterbury, New Zealand, 1997.

    Google Scholar 

  12. P. Buneman. A characterisation of rigid circuit graphs. Discrete Math., 9:205–212, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. H. Gamin and R. R. Sokal. A method for deducing branching sequences in phylogeny. Evolution, 19:311–326, 1965.

    Article  Google Scholar 

  14. J. Chen, J. Kanj, and W. Jia. Vertex cover: further observations and further improvements. In WGG ‘89, volume 1665 of Lecture Notes in Computer Science, pages 313–324. Springer-Verlag, 1999.

    Google Scholar 

  15. W. H. E. Day, D. S. Johnson, and D. Sankoff. The computational complexity of inferring rooted phylogenies by parsimony. Mathematical Biosciences, 81:33–42, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Dollo. Les lois de l’évolution. Bulletin de la Socieé Belge de Géologie de Paleontologic et d’Hydrologie, 7:164–167, 1893.

    Google Scholar 

  17. R. G. Downey and M. R. Fellows, Parameterized Complexity. Springer-Verlag, New York, NY, 1999.

    Google Scholar 

  18. A. Dress and M. Steel. Convex tree realizations of partitions. Appl. Math. Letters, 5(3):3–6, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. F. Estabrook. Phylogenetic trees and character state trees. In T. Duncan and T. F. Stuessy, editors, Cladistics, pages 131–151. Columbia University Press, New York, NY, 1984.

    Google Scholar 

  20. G. F. Estabrook. Ancestor-descendant relations and incompatible data: Motivation for research in discrete mathematics. In B. Mirkin, F. R. McMorris, F. S. Roberts, and A. Rzhetsky, editors, Mathematical Hierarchies and Biology, volume 37 of DIMACS Series in Discrete Mathematics, pages 1–28. American Mathematical Society, 1997.

    Google Scholar 

  21. G. F. Estabrook, C. S. Johnson Jr., and F. R. McMorris. An idealized concept of the true cladistic character. Mathematical Biosciences, 23:263–272, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. F. Estabrook and C. A. Meacham. How to determine the compatibility of undirected character state trees, Mathematical Biosciences, 46:251–256, 1979.

    Article  MathSciNet  Google Scholar 

  23. J. S. Farris. Phylogenetic analysis under Dollo’s law. Syst. Zool., 26:7788, 1977.

    Google Scholar 

  24. J. Felsenstein. PHYLIP homepage. http://evolution.genetics.washington.edu/phylip.html.

  25. David Fernández-Baca and Jens Lagergren. A polynomial-time algorithm for near-perfect phylogeny. In Proc. 23rd International Conference on Automata, Languages, and Programming, Lecture Notes in Computer Science, pages 670–680. Springer-Verlag, 1996.

    Google Scholar 

  26. David Fernández-Baca and Jens Lagergren. On the approximability of the steiner tree problem in phylogeny. Discrete Applied Mathematics, 88(1):127–143, 1999. Special issue on Computational Biology.

    Google Scholar 

  27. W. Fitch. Towards defining the course of evolution: minimum change for a specified tree topology. Syst. Zool., 20:406–416, 1971.

    Article  Google Scholar 

  28. L. R. Foulds and R. L. Graham. The Steiner problem in phylogeny is NP-complete. Adv. Appl. Math., 3:43–49, 1982.

    MathSciNet  MATH  Google Scholar 

  29. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combin. Theory Ser. B, 16:47–56, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, San Diego, 1980.

    MATH  Google Scholar 

  31. Dan Gusfield. The Steiner tree problem in phylogeny. Technical Report 334, Computer Science Department, Yale University, New Haven, Conn., 1984

    Google Scholar 

  32. Dan Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19–28, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. A. Hartigan. Minimum mutation fits to a given tree. Biometrics, 29:53–65, 1973.

    Article  Google Scholar 

  34. Monika Rauch Henzinger, Valerie King, and Tandy Warnow. Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology.. Algorithmica, 24:1–13, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Hougardy and H. J. Prömel, A 1.598 approximation for the Steiner problem in graphs. In Proceedings of the Tenth Annual Symposium on Discrete Algorithms, pages 448–453, 1999.

    Google Scholar 

  36. Tao Jiang, Paul Kerney, and Ming Li. Orchestrating quartets: approximation and error correction, In Proc. 39th IEEE Symp. on Foundations of Computer Science, pages 416–425, 1998.

    Google Scholar 

  37. Sampath Kannan and Tandy Warnow. Inferring evolutionary history from DNA sequences. In Proceedings of the 31st Annual Symposium on the Foundations of Computer Science, St. Louis, Missouri, 1990, pages 362–378, 1990.

    Chapter  Google Scholar 

  38. Sampath Kannan and Tandy Warnow. Triangulating three-colored graphs. SIAM J. on Discrete Mathematics, 5:249–258, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  39. Sampath Kannan and Tandy Warnow. A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM J. Computing, 26(6):1749–1763, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  40. Paul Kearney, Ming Li, John Tsang, and Tao Jiang. Recovering branches on the tree of life: an approximation algorithm. In Proc. 10th ACM-SIAM Symp. Discrete Algorithms, pages 537–546, 1999.

    Google Scholar 

  41. I. J. Kitching, P. L. Forey, C. J. Humphries, and David M. Williams. Cladistics: The theory and practice of parsimony analysis. Oxford University Press, Oxford, New York, 1998.

    Google Scholar 

  42. T Margush and F. R. McMorris. Consensus n-trees. Bulletin of Mathematical Biology, 43:239–244, 1981.

    MathSciNet  MATH  Google Scholar 

  43. F. R. McMorris. On the compatibility of binary qualitative taxonomic characters. Bull. Math. Biol., 39:133–138, 1977.

    MathSciNet  MATH  Google Scholar 

  44. F. R. McMorris and McKee T. A. Topics in Intersection Graph Theory. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia, PA, 1999.

    MATH  Google Scholar 

  45. F. R. McMorris, T. J. Warnow, and T. Wimer. Triangulating vertex colored graphs. SIAM Journal on Discrete Mathematics, 7(2), 1994. Preliminary version in 4th Annual Symposium on Discrete Algorithms, Austin, Texas, 1993.

    Article  MathSciNet  Google Scholar 

  46. Christopher A. Meacham. A manual method for character compatibility analysis. Taxon, 30(3):591–600, 1981.

    Article  Google Scholar 

  47. M. Nikaido, A. P. Rooney, and N. Okada. Phylogenetic relationships among certiodactyls based on insertions of short and long interspersed elements: Hyppopotamuses are the closest extant relatives of whales. Proc. Natl. Acad. Sci. USA, 96:10261–10266, 1999.

    Article  Google Scholar 

  48. R. D. M. Page and E. C. Holmes. Molecular Evolution: A phylogenetic approach. Blackwell Science, Oxford, 1998.

    Google Scholar 

  49. I. Peer, R. Shamir, and R. Sharan. Incomplete directed perfect phylogeny. In R. Giancarlo and D. Sankoff, editors, Combinatorial Pattern Matching, volume 1848 of Lecture Notes in Computer Science, pages 143–153. Springer-Verlag, 2000.

    Google Scholar 

  50. Neal Robertson and P. D. Seymour. Graph minors II: Algorithmic aspects of tree-width. Journal of Algorithms, 7:309–322, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  51. Charles Semple and Mike Steel. A supertree method for rooted trees. Discrete Applied Mathematics, 105:147–158, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. A. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 9:91–116, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  53. D. L. Swofford, G. J. Olsen, P. J. Waddel, and D. M Hillis. Phylogenetic inference. In D. M. Hillis, C. Moritz, and B. K. Mable, editors, Molecular Systematics, chapter 11, pages 407–509. Sinauer Assoc., Sunderland, Mass, 1996.

    Google Scholar 

  54. David Swofford. PAUP* homepage. http://www.Lms.si.edu/PAUP.

  55. W. H. Wagner. Problems in the classification of ferns. Recent Advances in Botany, 1:841–844, 1961.

    Google Scholar 

  56. Tandy J. Warnow. Combinatorial algorithms for constructing phylogenetic trees. PhD thesis, University of California, Berkeley, May 1991.

    Google Scholar 

  57. A. Zelikovsky. An 11/6-approximation for the network Steiner problem. Algorithmica, 9:463–470, 1993.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fernández-Baca, D. (2001). The Perfect Phylogeny Problem. In: Cheng, X.Z., Du, DZ. (eds) Steiner Trees in Industry. Combinatorial Optimization, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0255-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0255-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7963-8

  • Online ISBN: 978-1-4613-0255-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics