Skip to main content

Global Optimization of Bioprocesses using Stochastic and Hybrid Methods

  • Conference paper
Frontiers in Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 74))

Abstract

In this contribution, we will focus on problems arising in the context of biochemical process engineering. Many of these problems can be stated as the optimization of non-linear dynamic systems. Relevant classes in this domain are (i) optimal control problems (dynamic optimization), (ii) inverse problems (parameter estimation), and (iii) simultaneous design and control optimization problems. Most of these problems are, or can be transformed to, nonlinear programming problems subject to differential-algebraic constraints. It should be noted that their highly constrained and non-linear nature often causes non-convexity, thus global optimization methods are needed to find suitable solutions.

Here, we will present our experiences regarding the use of several stochastic, deterministic and hybrid global optimization methods to solve those problems. Several parallel versions of the most promising methods, which are able to run on standard clusters of PCs, will also be presented. Results for selected challenging case studies will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACO:

ant colony optimization

BVP:

boundary value problem

CP:

complete (state and control) parameterization

CVP:

control vector parameterization

DAEs:

differential algebraic equations

DE:

differential evolution

EC:

evolutionary computation

EP:

evolutionary programming

ES:

evolution strategy

GA:

genetic algorithm

ICRS:

Integrated Controlled Random Search

ISE:

integral square error

LJ:

Luus-Jaakola

MIOCP:

mixed integer optimal control problem

NFL:

no free lunch (theorem)

NLP:

nonlinear programming

ODEs:

ordinary differential equations

PDE:

partial differential equation

PI:

proportional integral (controller)

SA:

simulated annealing

SQP:

sequential quadratic programming

SRES:

Stochastic Ranking Evolution Strategy

References

  1. Ali M., Storey C., and Törn A. (1997), “Application of stochastic global optimization algorithms to practical problems,” J. Optim. Theory Appl. Vol. 95, 545–563.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bailey J. E. (1998), “Mathematical modeling and analysis in biochemical engineering: Past accomplishments and future opportunities,” Biotechnol. Prog. Vol. 14, 8–20.

    Article  Google Scholar 

  3. Balsa-Canto E., Alonso A. A. and Banga J. R. (1998), “Dynamic optimization of bio-processes: deterministic and stochastic strategies,” In A CoFop IV, Automatic Control of Food and Biological Processes, Göteborg, Sweden, 21–23 September.

    Google Scholar 

  4. Balsa-Canto E., Banga J. R., Alonso A. A., and Vassiliadis V. S. (2000),“Efficient optimal control of bioprocesses using second-order information,” Ind. Eng. Chem. Res. Vol. 39, 4287–4295.

    Article  Google Scholar 

  5. Banga J. R., Alonso A. A., Moles C. G. and Balsa-Canto E. (2002), “Efficient and robust numerical strategies for the optimal control of non-linear bio-processes,” In Proceedings of the Mediterranean Conference on Control and Automation (MED2002), Lisbon, Portugal.

    Google Scholar 

  6. Banga J. R., Alonso A. A. and Singh R. P. (1994), “Stochastic Optimal Control of Fed-Batch Bioreactors,” Presented at the AIChE Annual Meeting, San Francisco.

    Google Scholar 

  7. Banga J. R., Alonso A. A., and Singh R. P. (1997), “Stochastic dynamic optimization of batch and semicontinuous bioprocesses,” Biotechnol. Prog. Vol. 13, 326–335.

    Article  Google Scholar 

  8. Banga J. R., Balsa-Canto E., Moles C. G. and Alonso A. A. (2003), “Improving food processing using modern optimization methods,” Trends Food Sci. Technol., Vol. 14, 131–144.

    Article  Google Scholar 

  9. Banga J. R., Balsa-Canto E., Moles C. G. and Alonso A. A. (2003), “Optimization of bioreactors and bioprocesses: A review,” Proc. Indian Nat. Sci. Acad. Part A (Physical Sci.), in press.

    Google Scholar 

  10. Banga J. R. and Casares J. (1987), “ICRS: Application to a wastewater treatment plant model,” In IChemE Symp. Ser. No. 100, 183–192, Pergamon Press, Oxford, UK.

    Google Scholar 

  11. Banga J. R., Martin R. P., Gallardo J. M. and Casares J. J. (1991), “Optimization of thermal processing of conduction-heated canned foods: study of several objective functions,” J. Food Eng. Vol. 14, 25–51.

    Article  Google Scholar 

  12. Banga J. R. and Seider W. D. (1996), “Global optimization of chemical processes using stochastic algorithms,” In “State of the Art in Global Optimization”, C. A. Floudas and P. M. Pardalos (Eds.), Kluwer Academic Pub., Dordrecht, pages 563–583.

    Google Scholar 

  13. Banga J. R., Versyck K. J. and Van Impe J. F. (2002), “Computation of optimal identification experiments for nonlinear dynamic process models: an stochastic global optimization approach,” Ind. Eng. Chem. Res. Vol. 41, 2425–2430.

    Article  Google Scholar 

  14. Bansal V., Perkins J., Pistikopoulos E., Ross R. and Schijndel J. V. (2000), “Simultaneous design and control optimization under uncertainty,” Comput. Chem. Eng. Vol. 24, 261–281.

    Article  Google Scholar 

  15. Barton P. I., Allgor R., Feehery W. and Galan S. (1998), “Dynamic optimization in a discontinuous world,” Ind. Eng. Chem. Res. Vol. 37, 966–981.

    Article  Google Scholar 

  16. Barton P. I., Banga J. R. and Galan S. (2000), “Optimization of hybrid discrete-continuous dynamic systems,” Comput. Chem. Eng. Vol. 24, 2171–2191.

    Article  Google Scholar 

  17. Beyer H. G. (1996), “Toward a theory of evolution strategies: Self-adaptation,” Evolutionary Computation Vol. 3, 311–347.

    Article  MathSciNet  Google Scholar 

  18. Beyer H. G. and Schwefel H. P. (2002), “Evolution strategies - a comprehensive introduction,” Natural Computing Vol. 1, 3–52.

    Article  MathSciNet  MATH  Google Scholar 

  19. Bibila T. A. and Robinson D. K. (1995), “In pursuit of the optimal fed-batch process for monoclonal antibody production,” Biotech. Progr. Vol. 11, 1–15.

    Article  Google Scholar 

  20. Boender C., Kan A. R., Timmer G. and Stougie L. (1982), “A stochastic method for global optimization,” Math. Programming Vol. 22, 125–145.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bonabeau E., Dorigo M. and Theraulaz G. (1999), “Swarm intelligence: from natural to artificial isystems,” Oxford University Press, New York.

    Google Scholar 

  22. Bonabeau E., Dorigo M. and Theraulaz G. (2000), “Inspiration for optimization from social insect behaviour,” Nature Vol. 406, 39–42.

    Article  Google Scholar 

  23. Brooks S. (1958), “A discussion of random methods for seeking maxima,” Operations Res. Vol. 6, 244–251.

    Article  MathSciNet  Google Scholar 

  24. Bryson A. and Ho Y.-C. (1975), “Applied Optimal Control,” Hemisphere Publishing Corporation, New York.

    Google Scholar 

  25. Carrasco E. F. and Banga J. R. (1998), “A hybrid method for the optimal control of chemical processes,” IEE Conference Publication Vol. 2, 925–930

    Google Scholar 

  26. Chiou J. P. and Wang F. S. (1999), “Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process,” Comput. Chem. Eng. Vol. 23, 1277–1291.

    Article  Google Scholar 

  27. Coello C.A. (2002), “Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art,” Comput. Methods Appl. Mech. Eng. Vol. 191, 1245–1287.

    Article  MATH  Google Scholar 

  28. Corne D., Dorigo M.and Glover F. (1999), “New Ideas in Optimization,” McGraw-Hill, New York.

    Google Scholar 

  29. Csendes T. (1988), “Nonlinear parameter estimation by global optimization - Efficiency and reliability,” Acta Cybernetica Vol. 8, 361–370.

    MathSciNet  MATH  Google Scholar 

  30. Cuthrell J.E. and Biegler L.T. (1989), “Simultaneous Optimization and Solution Methods for Batch Reactor Control Profiles.,” Comput. Chem. Eng. Vol. 13, 49–60.

    Article  Google Scholar 

  31. Dorigo M., Maniezzo V.and Colorni A. (1996), “The Ant System: Optimization by a Colony Cooperaing Agents,” IEEE Transac. Systems Man Cyber. B Vol. 26, 29–41.

    Article  Google Scholar 

  32. Esposito W. R. and Floudas C. A. (2000), “Deterministic Global Optimization in Nonlinear Optimal Control Problems,” J. Global Optim. Vol. 17, 97–126.

    Article  MathSciNet  MATH  Google Scholar 

  33. Esposito W. R. and Floudas C. A. (2000), “Global Optimization for the Parameter Estimation of Differential-Algebraic Systems,” Ind. Eng. Chem. Res. Vol. 39, 1291–1310.

    Article  Google Scholar 

  34. Fogel L.J., Owens A.J. and Walsh M.J. (1966), “Artificial intelligence through simulated evolution,” Wiley, New York.

    Google Scholar 

  35. Fraga E.S., Hagemann J., Estrada-Villagrana A.and Bogle I.D.L. (2000), “Incorporation of Dynamic Behaviour in a Automated Process Synthesis System,” Comput. Chem. Eng. Vol. 24, 189–205.

    Article  Google Scholar 

  36. Goldberg D.E. (1989), “Genetic Algorithms in Search, Optimization and Machine Learning,” Addison Wesley Longman, London.

    Google Scholar 

  37. Gutirrez G. and Vega P. (2000), “Integrated Design of Activated Sludge Process Taking in to Account the Closed Loop Controllability,” Proc. ESCAPE-10, 63–69.

    Google Scholar 

  38. Heckler R. and Schwefel H.-P. (1978), “Superimposing direct search methods for parameter optimization onto dynamic simulation models. In Proc. Winter Simulation Conf. Vol. 1, 173–181, Miami Beach FL.

    Google Scholar 

  39. Holland J.H. (1992), “Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence,” MIT Press, Cambridge, MA.

    Google Scholar 

  40. Holmström K. (1999), “The TOMLAB Optimization Environment in Matlab,” Adv. Model. Optim. Vol. 1, 47.

    MATH  Google Scholar 

  41. Jayaraman V. K., Kulkarni B.D., Gupta K., Rajesh J. and Kusumaker H.S. (2001), “Dynamic Optimization of Fed-Batch Bioreactors Using the Ant Algorithm,” Biotech. Progr. Vol. 17, 81–88.

    Article  Google Scholar 

  42. Jones D.R. (2001), “DIRECT algorithm,” In Encyclopedia of Optimization, C.A. Floudas and P.M. Pardalos eds., Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  43. Kirkpatrick S., Gellatt C.D. and Vecchi M.P. (1983), “Optimization by Simulated Annealing,” Science Vol. 220, 671–680.

    Article  MathSciNet  Google Scholar 

  44. Laarhoven P.J.M. and Aarts E.H.L. (1987), “Simulated annealing: theory and applications,” Reidel Publishing Company, Dordrecht.

    Google Scholar 

  45. Lee J. H. (1999), “Comparison of various optimization approaches for fed-batch ethanol production,” Appl. Biochem. Biotech. Vol. 81, 91–105.

    Article  Google Scholar 

  46. Lopez Cruz I.L., van Willigenburg L.G. and van Straten G. (2000), “Evolutionary algorithms for optimal control of chemical processes,” In Proceedings of the LASTED International Conference on Control Applications, Cancun (Mexico).

    Google Scholar 

  47. Luus R. (1993), “Optimization of Fed-Batch Fermentors by Iterative Dynamic Programming,” Biotechnol. Bioeng. Vol. 41, 599–602.

    Article  Google Scholar 

  48. Luus R. and Hennessy D. (1999), “Optimization of Fed-Batch Reactors by the LuusJakola Optimization Procedure,” Ind. Eng. Chem. Res. Vol. 38, 1948–1955.

    Article  Google Scholar 

  49. Luus R. and Jaakola T.H.I. (1973), “Optimisation of Non-Linear Functions Subject to Equality Constraints,” LEC Proc. Des. Dev. Vol. 12, 380–383.

    Article  Google Scholar 

  50. Matsuura K., Shiba H., Nunokawa Y.and Shimizu H. (1993), “Calculation of optimal strategies for fermentation processes by genetic algorithm,” J. Soc. Ferment. Bioeng. Vol. 71, 171–178.

    Google Scholar 

  51. Matyas J. (1965), “Random Optimization,” Automation Remote Control Vol. 26, 246–253.

    MathSciNet  Google Scholar 

  52. Mendes P. (2001), “Modeling Large Biological Systems from Functional Genomic Data: Parameter Estimation,” In Foundations of Systems Biology, H. Kitano (ed.), 163–186, MIT Press, Cambridge, MA.

    Google Scholar 

  53. Mendes P. and Kell D.B. (1998), “Non-Linear Optimization of Biochemical Pathways: Applications to Metabolic Engineering and Parameter Estimation,” Bioinformatics Vol. 14, 869–883.

    Article  Google Scholar 

  54. Michalewicz Z., Dasgupta D., Le Riche R.G. and Schoenauer M. (1996), “Evolutionary algorithms for constrained engineering problems,” Comput. Ind. Eng. Vol. 30, 851–870.

    Article  Google Scholar 

  55. Michalewicz Z. and Fogel D.B. (2000), “How to solve it: modern heuristics,” Springer, Berlin.

    Google Scholar 

  56. Michalewicz Z., Janikow C.Z. and Krawczyk J.B. (1992), “A modified genetic algorithm for optimal control problems,” Comput. Math. with Appl. Vol. 23, 83–94.

    Article  MATH  Google Scholar 

  57. Michalewicz Z. and Schoenauer M. (1996), “Evolutionary Algorithms for Constrained Parameter Optimization Problems,” Evolutionary Comput. Vol. 4, 1–32.

    Article  Google Scholar 

  58. Moles C. G., Gutierrez G., Alonso A.A. and Banga J. R. (2001), “Integrated Process Design and Control via Global Optimization: a Wastewater Treatment Plant Case Study,” In European Control Conference (ECC) 2001, Porto (Portugal).

    Google Scholar 

  59. Moles C.G., Mendes P. and Banga J. R. (2001), “Global optimization of biochemical pathways: the parameter estimation problem,” In Proceedings of the Third International Conference in Systems Biology ICSB 2002, Stockholm.

    Google Scholar 

  60. Morari M. and Perkins J.D. (1994), “Design for Operations,” In Foundations of Computer-Aided Process Design (FOCAPD).

    Google Scholar 

  61. Na J. G., Chang Y. K., Chung B. H. and Lim H. C. (2002), “Adaptive optimization of fed-batch culture of yeast by using genetic algorithms,” Bioproc. Biosyst. Eng., Vol. 24, 299–308.

    Article  Google Scholar 

  62. Papamichail I. and Adjiman C. S. (2002), “A Rigorous Global Optimization Algorithm for Problems with Ordinary Differential Equations,” J. Global Optimization, Vol. 24, 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  63. Pistikopoulos E.N., Ross R. and Schijndel J.M.G. (1999), “Towards the Integration of Process Design, Process Control and Process Operability. Current Status and Future Trends,” In Foundations of Computer-Aided Process Design (FOCAPD), Snowmass, CO.

    Google Scholar 

  64. Rastrigin L.A. and Rubinstein Y. (1969), “The Comparison of Random Search and Stochastic Approximation while Solving the Problem of Optimization,” Automatic Control, Vol. 2, 23–29.

    Google Scholar 

  65. Rechenberg I. (2000), “Case studies in evolutionary experimentation and computation,” Comput. Methods Appl. Mech. Eng., Vol. 186, 125.

    Article  MATH  Google Scholar 

  66. Rinnooy-Kan A. H. G. and Timmer G. T. (1987), “Stochastic Global Optimization Methods. Part I: Clustering Methods,” Math. Progr., Vol. 39, 27.

    Article  MathSciNet  MATH  Google Scholar 

  67. Rodriguez-Acosta F., Regalado C. M. and Torres N. V. (1999), “Non-linear optimization of biotechnological processes by stochastic algorithms. Application to the maximization of the production rate of ethanol, glycerol and carbohydrates by Saccharomyces cerevisiae,” J. Biotechnol., Vol. 68, 15–28.

    Article  Google Scholar 

  68. Ronen M., Shabtai Y.and Guterman H. (2002), “Optimization of feeding profile for a fed-batch bioreactor by an evolutionary algorithm,” J. Biotechnol., Vol. 97, 253–263.

    Article  Google Scholar 

  69. Roubos J.A., Gooijer C.D. de, Van Straten G. and Van Boxtel A.J.B. (1997), “Comparison of Optimization Methods for Fed-Batch Cultures of Hybridoma Cells,” Bioproc. Eng., Vol. 17, 99–102.

    Article  Google Scholar 

  70. Roubos J.A., Van Straten G. and Van Boxtel A.J.B. (1999), “An Evolutionary Strategy for Fed-Batch Bioreactor Optimization; Concepts and Performance,” J. Biotechnol., Vol. 67, 173–187.

    Article  Google Scholar 

  71. Runarsson T.P. and Yao X. (2000), “Stochastic Ranking for Constrained Evolutionary Optimization,” IEEE Transac. Evol. Comp., Vol. 4, 284–294.

    Article  Google Scholar 

  72. San K.Y. and Stephanopoulos G. (1984), “A note on the optimality criteria for maximum biomass production in a fed-batch fermentor.,” Biotechnol. Bioeng., Vol. 26, 1261–1264.

    Article  Google Scholar 

  73. Schittkowski K. (2003), “Numerical data fitting in dynamical systems: a practical introduction with applications and software,” Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  74. Schwefel H.-P. (1995), “Evolution and optimum seeking,” Wiley, New York.

    Google Scholar 

  75. Schweiger C.A. and Floudas A. (1997), “Interaction of Design and Control: Optimization with Dyamic Models,” In Optimal Control Theory, Algorithms and Applications, (Hager, W.W. and Pardalos, P.M., eds.), Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  76. Seywald H., Kumar R.R. and Deshpande S.M (1995), “Genetic Algorithm Approach for Optimal Control Problems with Linearly Appearing Controls,” J. Guid. Contr. Dyn., Vol. 18, 177–182.

    Article  Google Scholar 

  77. Shimizu K. (1996), “A Tutorial Review on Bioprocess Systems Engineering,” Comput. Chem. Eng., Vol. 20, 915–941.

    Article  Google Scholar 

  78. Simutis R. and Lubbert A. (1997), “A comparative study on random search algorithms for biotechnical process optimization,” J. Biotechnol., Vol. 52, 245–256.

    Article  Google Scholar 

  79. Singer A. B., Bok J. K.and Barton P. I. (2001), “Convex Underestimators for Variational and Optimal Control Problems,” Computer Aided Chem. Eng., Vol. 9, 767–772.

    Article  Google Scholar 

  80. Storn R. and Price K. (1997), “Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Global. Optim., Vol. 11, 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  81. Törn A., Ali M. and Viitanen S. (1999), “Stochastic Global Optimization: Problem Classes and Solution Techniques,” J. Global Optim., Vol. 14, 437.

    Article  MathSciNet  MATH  Google Scholar 

  82. Törn A. A. (1973), “Global optimization as a combination of global and local search,” In Proceedings of Computer Simulation Versus Analytical Solutions for Business and Economic Models, Gothenburg.

    Google Scholar 

  83. Vassiliadis V. S. (1993), “Computational Solution of Dynamic Optimization Problems with General Differential-Algebraic Constraints,” PhD Thesis, Imperial College, University of London.

    Google Scholar 

  84. Vassiliadis V. S., Balsa-Canto E.and Banga J. R. (1999), “Second Order Sensitivities of General Dynamic Systems with Application to Optimal Control Problems.,” Chem. Eng. Sci., Vol. 54, 3851–3860.

    Article  Google Scholar 

  85. Versyck K., Claes J. and Van Impe J. (1997), “Practical identification of unstructured growth kinetics by application of optimal experimental design.,” Biotechnol. Prog., Vol. 13, 524–531.

    Article  Google Scholar 

  86. Wang F.S. and Chiou J.P. (1997), “Optimal Control and Optimal Time Location Problems of Differential-Algebraic Systems by Differential Evolution,” Ind. Eng. Chem. Res., Vol. 36, 5348–5357.

    Article  Google Scholar 

  87. Wolpert D.H. and Macready W.G. (1997), “No Free Lunch Theorems for Optimization,” IEEE Transac. Evol. Comp., Vol. 1, 67–82.

    Article  Google Scholar 

  88. Yamashita Y. and Shima M. (1997), “Numerical Computational Method Using Genetic Algorithm for the Optimal Control Problem with Terminal Constraints and Free Parameters,” Nonlinear Anal. Theory Methods Appl. Vol. 30, 2285–2290.

    Article  MathSciNet  MATH  Google Scholar 

  89. Zabinsky Z.B. and Smith R.L. (1992), “Pure Adaptive Search in Global Optimization,” Math. Progr., Vol. 53, 323–338.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Banga, J.R., Moles, C.G., Alonso, A.A. (2004). Global Optimization of Bioprocesses using Stochastic and Hybrid Methods. In: Floudas, C.A., Pardalos, P. (eds) Frontiers in Global Optimization. Nonconvex Optimization and Its Applications, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0251-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0251-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7961-4

  • Online ISBN: 978-1-4613-0251-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics